Spontaneous Coronary Artery Dissection: Time to Improve Our Systems of Care

Dr. Christina Thaler MD PhD- Minneapolis Heart Institute, Hennepin County Medical Center

Spontaneous Coronary Artery Dissection: Time to Improve Our Systems of Care

Christina Thaler, MD PhD

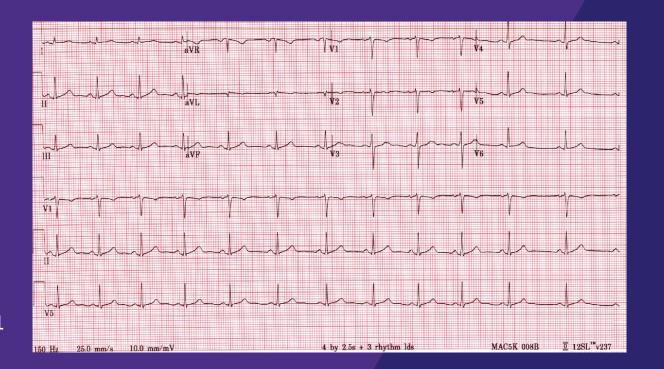
Cardiology Fellow

Minneapolis Heart Institute and Hennepin County Medical Center

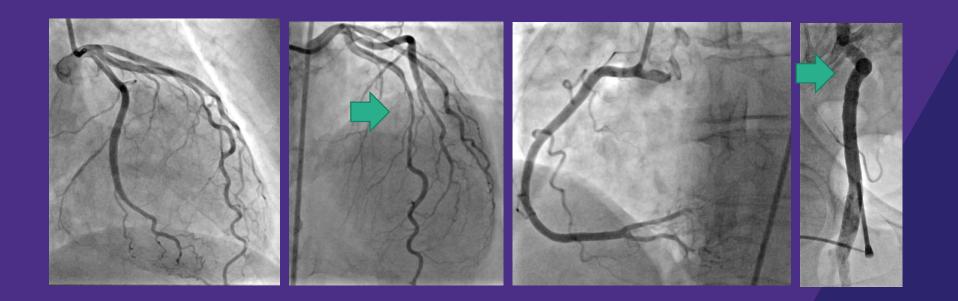
Conflicts of Interest

- Research Funding
 - SCAD Research Inc, Scottsdale, AZ
 - Minneapolis Heart Institute Foundation, Minneapolis, MN

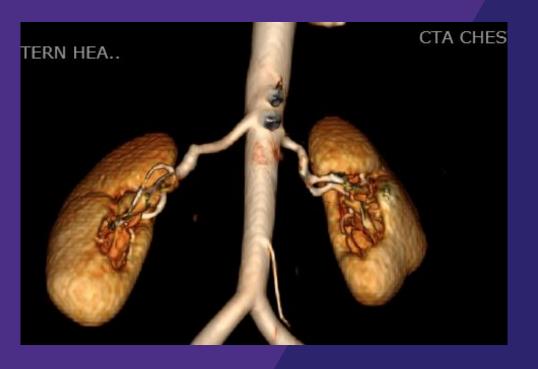
Spontaneous Coronary Artery Dissections


- Case Study
- Diagnosis
- Acute Management
- Long Term Management / Follow-up

Case: 64 year old woman with chest pain

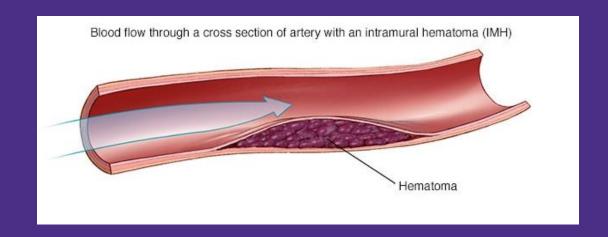

- Sudden onset of severe sharp mid chest pain radiating to her left arm
- Past Medical History:
 - Mixed atherosclerotic and embolic CAD
 - Vasospasm
- Medications
 - Atorvastatin
 - Aspirin
 - Ranolazine
 - Amlodipine
- Vitals: BP 120/90, P 63, T 36.1C, SpO2 97%
- Exam: Unremarkable
- Labs: BMP, CBC normal, Troponin positive at 0.1 mcg/L
- Admitted for NSTEMI with standard treatment

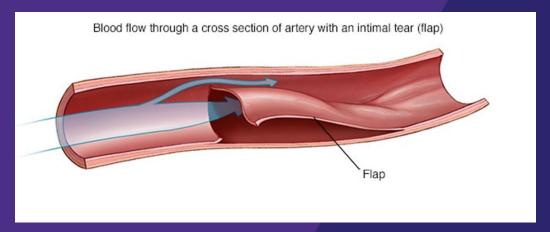
SCAD of the Proximal to Mid LAD


SCAD with Fibromuscular Dysplasia: A Unifying Diagnosis

Femoral Artery

Carotid Arteries


Renal Arteries



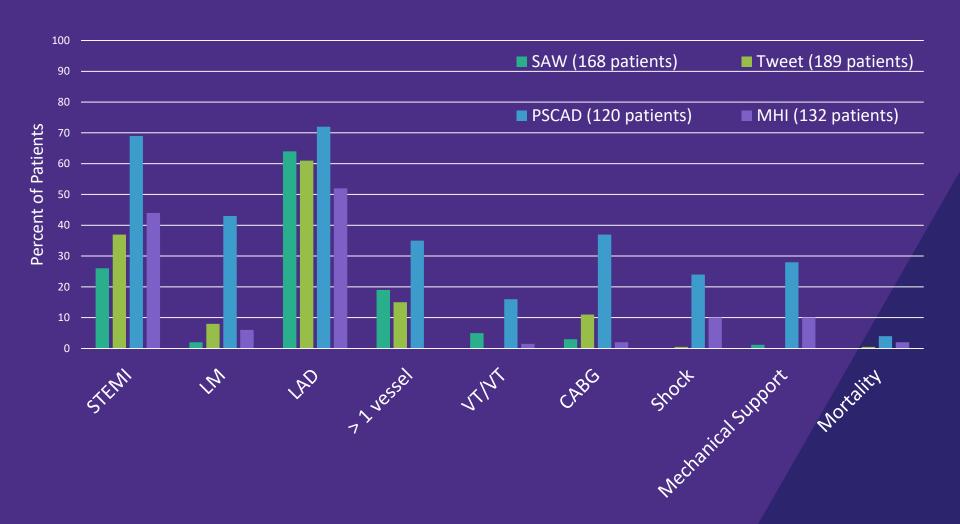
What is SCAD?

 Separation of coronary artery intima from media (dissection) by hematoma resulting in coronary lumen obstruction

From: https://www.mayoclinic.org/diseases-conditions/spontaneous-coronary-artery-dissection/symptoms-causes/syc-20353711>">https://www.mayoclinic.org/diseases-conditions/spontaneous-coronary-artery-dissection/symptoms-causes/syc-20353711>">https://www.mayoclinic.org/diseases-conditions/spontaneous-coronary-artery-dissection/symptoms-causes/syc-20353711>">https://www.mayoclinic.org/diseases-conditions/spontaneous-coronary-artery-dissection/symptoms-causes/syc-20353711>">https://www.mayoclinic.org/diseases-conditions/spontaneous-coronary-artery-dissection/symptoms-causes/syc-20353711>">https://www.mayoclinic.org/diseases-conditions/spontaneous-coronary-artery-dissection/symptoms-causes/syc-20353711>">https://www.mayoclinic.org/diseases-conditions/spontaneous-coronary-artery-dissection/symptoms-causes/syc-20353711>">https://www.mayoclinic.org/diseases-coronary-artery-dissection/symptoms-causes/syc-20353711>">https://www.mayoclinic.org/diseases-coronary-artery-diseases-

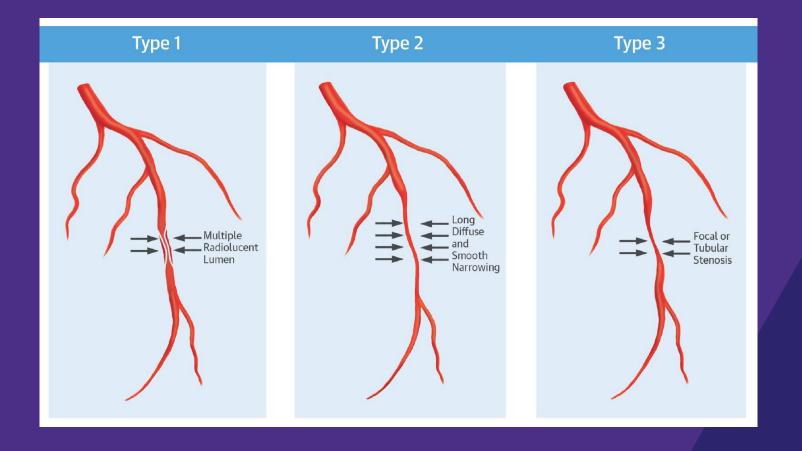
Demographics

Table I Demographics and risk factors of patients with spontaneous coronary artery dissection (SCAD) in contemporary case series (studies with n > 20)


	Max N	Age (years)	Gender (female, %)	HTN (%)	Chol (%)	Smoking (%)	DM (%)	FH (%)	P-SCAD (%)
Mayo Clinic ³	189	44 ± 9	92	31	22	15	2	NA	15
Saw ⁴	168	52 ± 9	92	39	24	13	5	29	2
Lettieri ⁵	134	52 ± 11	81	51	33	34	2	25	NA
Faden ⁶	79	33 ± 5	100	17	18	17	11	NA	100
Rogowski ⁷	64	53 ± 11	94	45	52	28	0	19	5
Nakashima ⁸	63	46 ± 10	94	33	23	32	0	8	8
Motreff ¹³	55	50	100	27	11	22	4	22	4
McGrath-Cadell ⁹	40	45 ± 10	95	18	10	8	5	28	8
Roura ¹⁰	34	47 ± 12	94	NA	NA	NA	NA		15
Alfonso ¹¹	27	52 ± 10	85	37	33	52	4	NA	4
lto ¹²	23	45 ± 11	100	57	22	30	4	NA	30
Vanzetto ¹⁴	23	46 ± 9	74	26	39	43	13	13	0
Mortensen ¹⁵	22	49 ± 9	81	38	NA	57	0	40	10
Rashid ¹⁶	21	53 ± 9	95	48	48	47	5	24	0

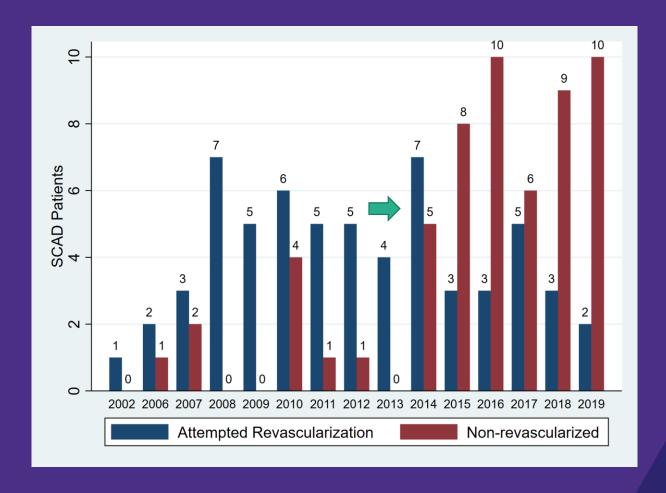
Adlam, David, et al. "Spontaneous coronary artery dissection." Eur Heart J (2016) 37: 3073-3074.

SCAD Presentation



Modified From: Havakuk, Ofer, et al. Circulation: Cardiovascular Interventions (2017) 10 (3): e004941.

Diagnosis by Angiogram

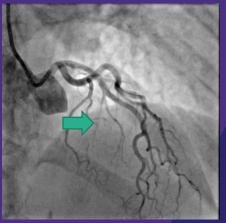


Saw et al. J Am Coll Cardiol 2017;70:1148-58.

SCAD Revascularization Rate By Year at MHI

Multimodality Imaging Enhances SCAD Diagnosis

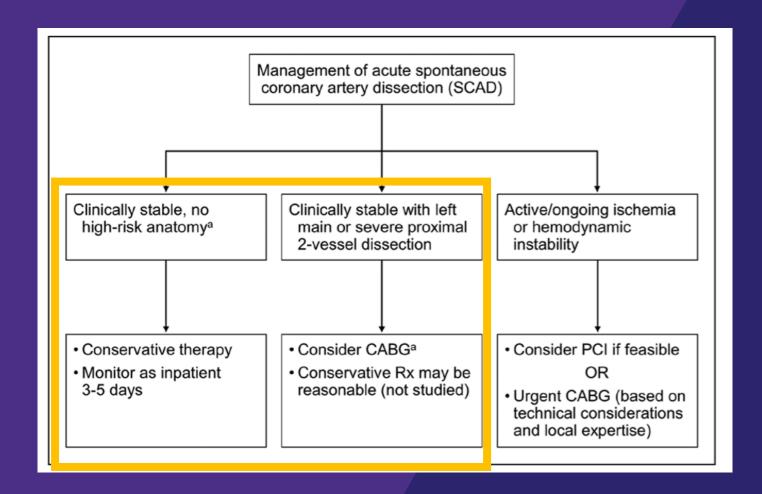
- Optical Coherence Tomography / Intravascular Ultrasound to Confirm Dissection
 - Improved spatial resolution
 - Only recommend if diagnosis is unclear due to dissection risk
- CT Coronary Angiography
 - Exclude significant atherosclerotic disease
 - Useful to visualize proximal dissections
- Cardiac MRI
 - Diagnose and confirm location of myocardial infarction



Cardiac MRI in Diagnosis of SCAD

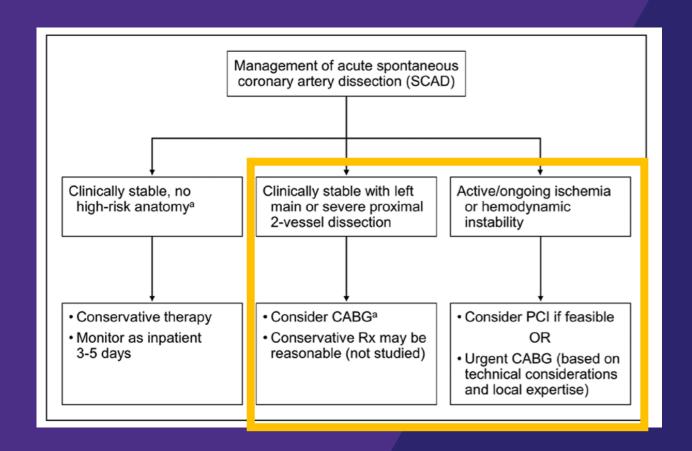
- 60 year old woman without significant medical history had NSTEMI with troponin to 12
- Angiogram with "normal coronary arteries"
- cMRI transmural infraction of the basal to mid interventricular septum with wall motion abnormality

Diagnosis of SCAD


- Diagnosis can be challenging
- Coronary Angiography primary modality for diagnosis
- Multimodality Imaging can augment coronary angiography

Acute Management

- Spontaneous healing 70-90%
 - Predominantly NSTEMI
- Often healed by 1 month
- Repeat angiography only based on clinical symptoms


Hayes et al, Circulation. 2018; 137(19): e523-557.

SCAD Revascularization

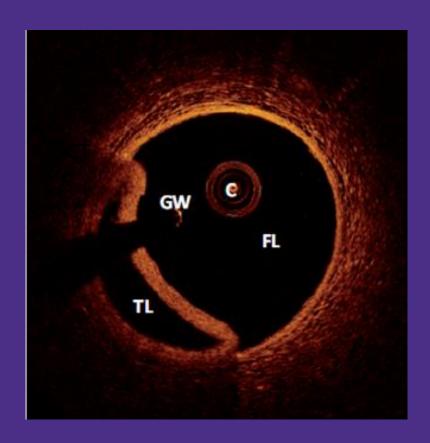
- Technically Challenging
- Technical failure: 25-36%
- Suboptimal results: 25%
- Emergency CABG 9-12%

Hayes et al, Circulation. 2018; 137(19): e523-557.

latrogenic Dissection

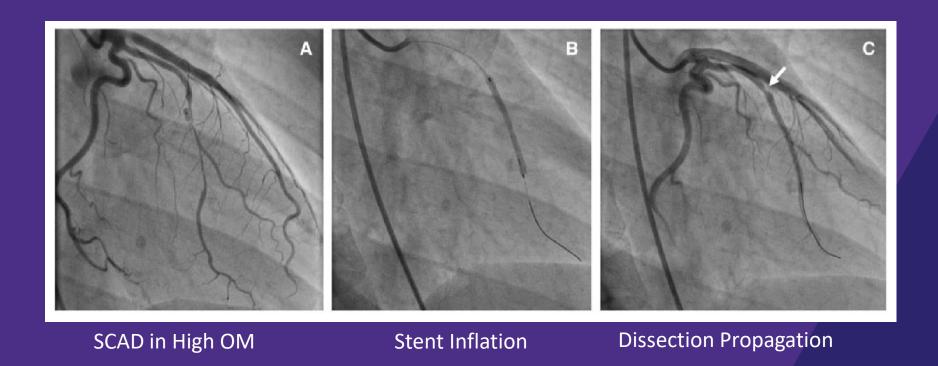
- 3.4% of SCAD Patients vs <0.2% general population
- Increased Risk
 - Radial approach
 - Deep catheter intubation

Right Coronary Artery latrogenic Dissection


Left Anterior Descending Artery Spontaneous Dissection

Prakash, Roshan, et al. "Catheter-induced iatrogenic coronary artery dissection in patients with spontaneous coronary artery dissection." *JACC: Cardiovascular Interventions*. (2016) 9(17): 1851-1853.

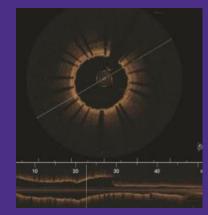
False Lumen Stenting


Adlam, David, et al. "Spontaneous coronary artery dissection." *Eur Heart J* (2016) 37: 3073-3074.

Kalra, Ankur, et al. "Percutaneous coronary intervention in spontaneous coronary artery dissection: role of intravascular ultrasound." *Cardiology and therapy* (2014) 3(1-2):61-66.

Dissection Propagation

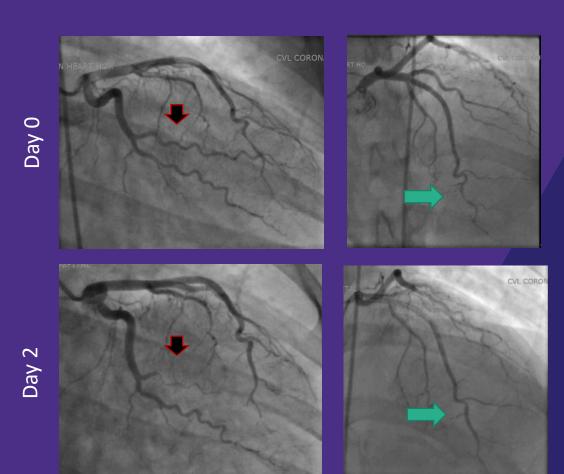
Adlam, David, et al. "Spontaneous coronary artery dissection." *Eur Heart J* (2016) 37: 3073-3074.



Late Hematoma Resorption with Stent Malapposition

9 days after PCI for mLAD SCAD

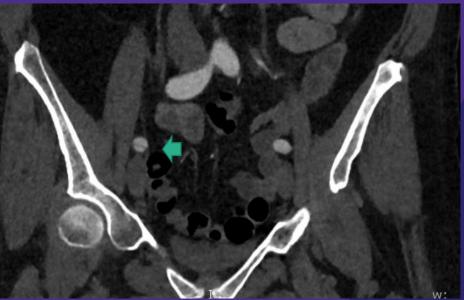
2 days later after 2nd PCI


Lempereur et al. Cardiovasc Diagn Ther 2015; 5(4): 323-329.

Progression in New Vessels During Index Admission

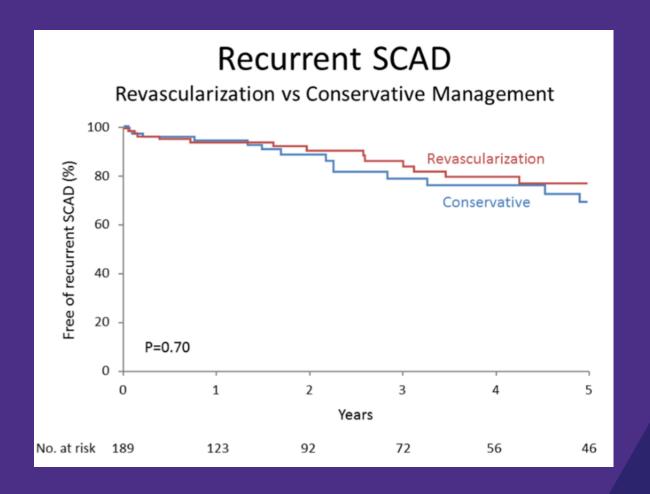
- 5-20% of patients will have early progression of disease
- 2.6-8.5% will fail conservative treatment
- Hospitalized minimum 48 hours, up to 5 day can be justified

Waterbury Circ Cardiovasc Interv. 2018;11:e006772.



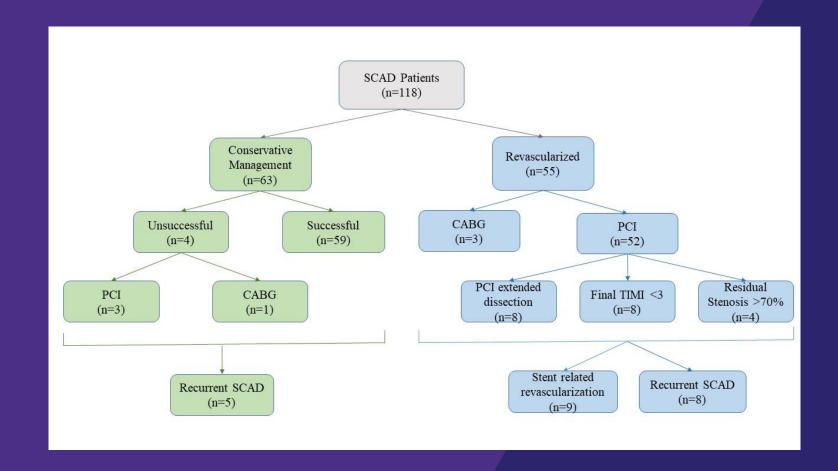
Non-Coronary Dissections

Spontaneous Superior Mesenteric Artery Dissection



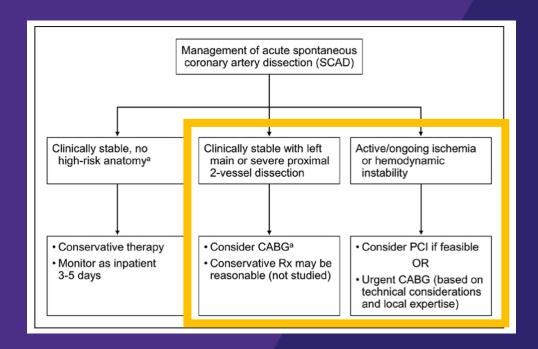
latrogenic Femoral Artery Dissection

PCI Is NOT Protective From Recurrent SCAD


Tweet, Marysia S., et al. Circulation: Cardiovascular Interventions (2014) 7(6): 777-786.

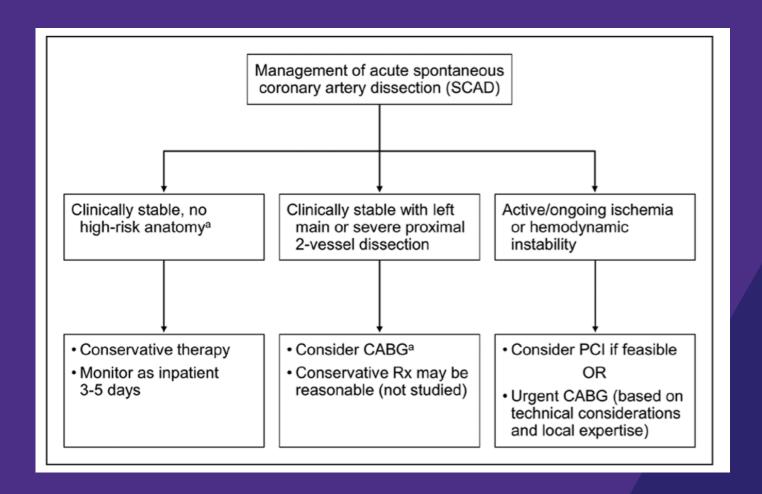
Revascularization Complications at MHI

- Repeat Revascularization: 15 (25.9%)
- Stent Related Complications:
 - PCI extending dissection: 8 (15.4%)
 - Final TIMI <3: 8 (15.4%)
 - Residual stenosis >70%: 4 (7.7%)
 - Stent Thrombosis: 2 (3.4%)
 - Restenosis: 5 (8.6%)
 - Residual Stenosis: 2 (3.4%)
 - Stent Mal-apposition: 1 (1.7%)
- SCAD Recurrence requiring PCI with stenting: 5 (8.6%)
- Multiple Interventions: 2 patients (3.4%)



Coronary Artery Bypass Grafting

- Considered Left Main or Proximal Dissections
- High Early Rates of Revascularization
 - 20 patients, 32 of 34 intended targets re-vascularized
- High Rates of Late Graft Failure
 - 11/16 graft failures in 11 of 20 patients imaged during follow-up
- Not protective from recurrent SCAD



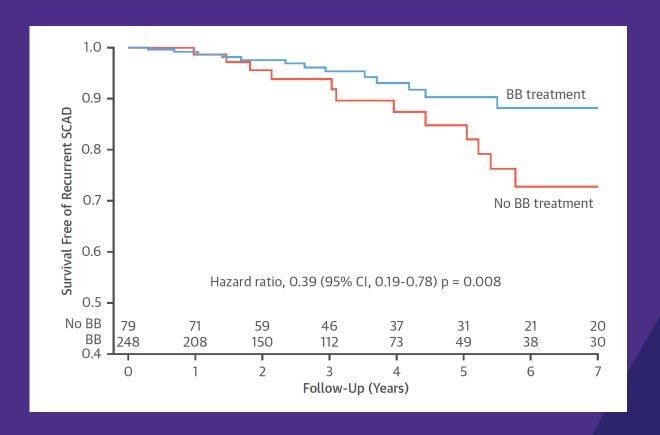
Tweet, Marysia S., et al. "Spontaneous coronary artery dissection: revascularization versus conservative therapy." *Circulation: Cardiovascular Interventions* (2014) 7(6): 777-786.

Summary Acute Management

Medical Therapy

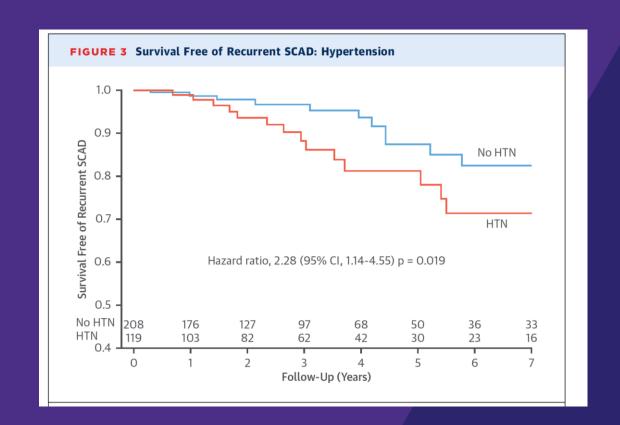
No randomized trials

Based on expert opinion


Anticoagulation and Antiplatelet Therapy

- Heparin- Discontinue
 - Theoretical risk worsening dissection
- Aspirin- Continue
 - Minimum 1 year, possibly indefinitely
- Dual Antiplatelet Therapy
 - Published series predominantly use clopidogrel
 - Follow standard recommendations for PCI
 - Unclear benefit or duration in use for conservative management
 - Consider 1-3 months in conservatively treated patients

Life Long Beta- Blocker Therapy


Saw et al. J Am Coll Cardiol 2017;70:1148-58.

Treat Hypertension

- Ace-I / ARB
 - LV systolic dysfunction
 - Fibromuscular dysplasia
- Calcium Channel Blockers
 - Anti-anginal

Saw et al. J Am Coll Cardiol 2017;70:1148-58.

Statin Therapy

- Tweet et al in a series of 87 patients found higher recurrence rate with statin use
- Saw et al in series of 327 patients found no association with SCAD recurrence and statin use
- Recommended for primary prevention

Saw et al. J Am Coll Cardiol 2017;70:1148–58. Tweet et al. *Circulation*. (2012)126(5):579-88

Antianginal Therapy

- Chest pain after SCAD is common
 - MHI: 50% of non-revasuclarized and 70% of revascularized patients had ED and / or hospital admissions for chest pain
 - Exertional and Non-exertional
 - Mental Stress
 - Anxiety and depression in ~40% of patients following SCAD
 - Menstrual cycle
- Treatment
 - Short and long acting nitrates
 - Calcium channel Blockers
 - Ranolazine
 - Treat associated anxiety and depression

Medial Therapy- Summary

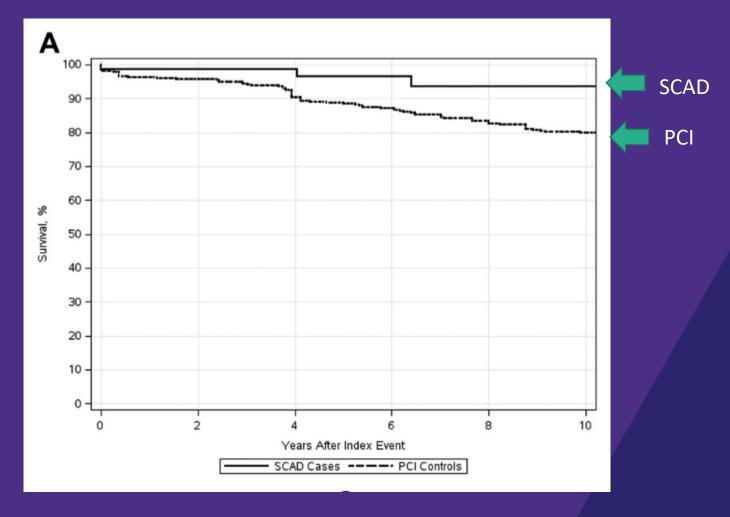
- Discontinue heparin
- Aspirin and beta blocker therapy life long
- Dual antiplatelet individualize recommendation
- ACE-I or ARBs for hypertension or LV systolic dysfunction
- Statins if meet criteria for primary prevention
- Antianginal therapy for post-SCAD chest pain

All SCAD Patients Should Be Referred for Cardiac Rehabilitation

- Starting goals exercise
 - BP max 130/80
 - HR 50-70% of heart rate reserve
 - Free weights: 2-12lbs to start
 - Working up to 20lbs women
 - Working up to 50lbs men
 - Low resistance and high repetition

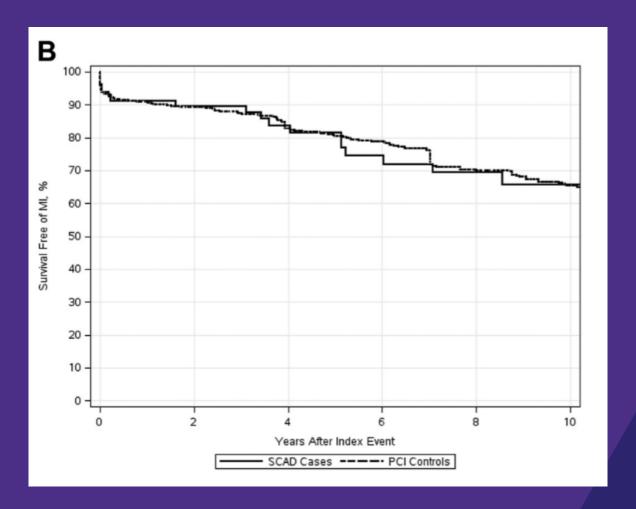
- Avoid
 - Strain / Valsalva maneuvers
 - High intensity activities
 - High contact sports
 - Pushing to exhaustion
 - Extreme temperatures
 - Abrupt increases in physical activity

Chou et al. J Can J Cardiol 2016;32(4):554-60.


Heart Failure

- All SCAD Patients should have LV EF assessment prior to discharge
- LV EF <50 %
 - Saw et al series of 327 pts: 21.8% at presentation with decreased EF
 - MHI: 19% of non-revascuarlized and 44% of revascularized patients with decreased EF
- Heart Failure Requiring Advanced Therapies at MHI
 - 2 Heart Transplants
 - 1 Left Ventricular Assist Device

Overall Survival Excellent



Tweet et al. Circulation. (2012)126(5):579-88.

Recurrence is Common

Tweet et al. *Circulation*. (2012)126(5):579-88.

Pregnancy Associated SCAD

- 1.81 SCAD events per 100,000 pregnancies
- Common etiology of MI among pregnant and post-partum women
- 4% of MHI SCAD Patients
- Higher complication rate
- Acute management same as non-pregnancy SCAD
- Less likely to be associated with Fibromuscular Dysplasia

Pregnancy and Hormone Counseling with SCAD

- Pregnancy Counseling
 - Recommend against pregnancy, but data limited support recommendation
 - Preconception counseling if someone desires pregnancy (MHI Cardio-Pregnancy Program)
- Hormone Therapy
 - Non-hormonal contraceptives (IUD with progestin preferred)
 - Avoid Hormone Replacement Therapy
- Medications Contraindicated in pregnancy
 - Statins
 - Atenolol
 - Ace-Inhibitors

Havakuk, Ofer, et al. Circulation: Cardiovascular Interventions (2017) 10 (3): e004941.

Fibromuscular Dysplasia

- Non-inflammatory non-atherosclerotic disorder that leads to arterial stenosis of small to medium sized vessels
- Aneurysm, tortuosity, and dissections of small to medium sized vessels common

Renal Artery

Carotid Arteries

Femoral Artery

Coronary Artery

Eleid Circ Cardiovasc Interv. 2014;7:656-662.

Fibromuscular Dysplasia Management

- Aspirin 81mg daily for life for thrombosis prevention
- Blood pressure management
 - Ace-I / ARBs for renovascular involvement
 - Beta Blockers for SCAD
 - Beta Blockers, calcium channel blockers, ARBs for Migraines
- Migraines
 - Avoid triptans / vasoconstrictive medications
- Smoking Cessation

Gornik et al, First International Consensus on the diagnosis and management of fibromuscular dysplasia. *Vascular Medicine*. 2019: 24(2) 164-180.

Conclusions

- Diagnosis can be challenging
 - Be aware of prior misdiagnosis
 - Multimodality Imaging
- Acute Management
 - Keep inpatient for minimum 2-3 days
 - Aspirin / Beta Blockers / Clopidogrel
 - Look for Fibromuscular Dysplasia
- Long Term Management
 - Continue Beta Blockers
 - Manage Blood Pressure
 - Pregnancy / Hormone Therapy Counseling
 - Refer to Cardiac Rehabilitation

Thank You.

Mindy Cook

Senior Quality Improvement Manager Quality, Outcomes Research & Analytics – National Center

American Heart Association

2750 Blue Water Road, Suite 250

Eagan, MN 55121

Mindy.Cook@heart.org

www.heart.org/quality

www.linkedin.com/in/Mindy-Cook

O 952.278.7938

