Stroke in Asians and Blacks

Lauren H. Sansing, MD, MSTR
CT Stroke Conference
May 20, 2011
Presenter Disclosure Information

Lauren H. Sansing, MD, MSTR
Stroke in Asians and Blacks

FINANCIAL DISCLOSURE:
None

UNLABELED/UNAPPROVED USES DISCLOSURE:
None
Rationale

• Differences in epidemiology, risk factors, and stroke subtypes
• Potential differences in responses to treatment
• Knowledge of these differences can
 – Prevent missing the correct etiology
 – Lead to most effective treatment
 – Aid in design of clinical trials to improve our care
Risk of Stroke in Blacks

• Blacks < 75 yo have 2x risk of stroke death
 – Driven by higher incidence (not case fatality)
• Higher prevalence of risk factors:
 – Diabetes, hypertension, renal failure
• Less access to specialists
• Lower tPA rates in blacks
 – 1195 AIS pts at 42 medical centers
 – Blacks 1/5 as likely to receive tPA!

Mortality in Ischemic Stroke

• Conflicting data on early mortality rates among black and white patients
• Blacks less likely to receive tPA and have less access to specialized care
• In cohort study of 23,659 pts hospitalized for stroke in NY:
 – Blacks had lower in-hospital mortality: 5 vs 7.4%
 – Lower all-cause mortality at 30 d: 6.1 vs 11.4%
 – Higher rates of life-sustaining interventions
 – Lower rates of hospice admission
 – Limited by lack of stroke severity and QOL measures

Disparities in Access to Care

- Among stroke survivors!
- Greater recurrent stroke risk
- U.S. blacks > 65 yo
 - Higher rate of no generalist f/u: 12% vs 8%
 - Inability to afford medications: 11% vs 6%
 - No specialist visit: 49% vs 40%
 - Differences persisted after adjustment for income, education

Rx for Risk reduction

• Hypertension:
 – Combination therapy: CCBs/ACE-I or thiazide diuretic/ACE-I

• Antiplatelet:
 – Subgroup of TASS (ticlodipine aspirin stroke study) found 24% RRR in ticlid arm among nonwhites
 – AAASPS: African-American Antiplatelet Stroke Prevention Study-
 • RCT ticlid vs aspirin in noncardioembolic strokes
 • No difference in outcomes

Gorelick et al. JAMA;289:2947-57.
Case

- 49 Black M presents with L numbness and weakness x 45 minutes
- Hx HTN, IDDM, nonsmoker, not obese
Intracranial atherosclerosis

• Nonwhites: OR for intracranial athero 4.4, after adjusting for age, education, IDDM, hyperlipidemia

• Intracranial athero confers high stroke recurrence rate: 22% in 1 yr for >50% stenosis (WASID)

• Aggressive med therapy warranted
 – Antiplatelets, statins, BP control, glycemic control, lifestyle modifications
 – No benefit for warfarin or stenting

Case

• A 15 yo AAF presents with large MCA infarct. MRA shows proximal L MCA occlusion and severe stenosis in R ICA. CBC shows wbc 9, Hb 8, plts 330.
What’s the diagnosis?
What’s the diagnosis?

SICKLE CELL DISEASE
Sickle Cell Disease

• Autosomal recessive, point mutation in β-globin on chromosome 11
• Abnormal Hb protein results in polymerization of hemoglobin under low O2 tension \(\rightarrow\) sickle-shaped rbcs
• Severe hemolytic anemia, released Hb depletes NO
• Risk of stroke 11% by age 20 in HbSS pts
• Usually blockage of intracranial ICA and MCA
Peripheral smear in SCD
STOP TRIAL

• Ages 2-16, HbSS or HbSβ^0, no hx stroke, not getting transfusions
• TCD screening – 2 studies with ICA or MCA > 200 → randomized to transfusion therapy versus standard therapy
• No hydroxyurea or other antisickling agents
• Transfusions to HbS < 30% total Hb (mean interval 1 month)
• Stroke rate 10% vs. < 1% - studied halted early

STOP2

• What about high-risk kids, treated with transfusions for 2 yrs or more, and now have nl TCDs?
 – Transfusions have risks- iron overload, infections, etc
• Ages 5-20, 2 nl TCDs while still getting transfusions
 Randomized to cont. transfusions or not.
• Halted early- 16 / 79 pts (all off transfusion) had either stroke or reversion to high velocities on TCDs- median time 3.2 mos
• Most need iron chelator therapy

TCD Criteria in Sickle Cell Disease

![Graph showing probability of remaining stroke free over time for different velocities: <170 cm/s, 170-199 cm/s, ≥200 cm/s.](Verduzco. Blood 114(25):5117, 2009)
Hydroxyurea?

- Cohort of pts at Duke
 - 59 children with nl TCDs and 15 with “conditional” TCD velocities (170-200) plus 6 kids with veloc > 200 whose families refused transfusion
 - Given hydroxyurea for pain crises, acute chest, etc
 - Significant reduction in TCD velocities
- Multicenter, controlled trial pending
- Current recs chronic transfusion therapy with chelation
 - $400,000 per patient for a decade

Case

• 64 AAM presents with sudden headache and flaccid R hemiparesis

• BP 225/118
Intracerebral hemorrhage
ICH Relative Risk (by Race)

Switching gears...

• Special considerations in Asians
Stroke etiology in Asians

• Higher burden of cerebrovascular disease
 – Stroke 3x more common than CAD

• Higher rates of ICH

<table>
<thead>
<tr>
<th>Study year</th>
<th>Population</th>
<th>CI (%)</th>
<th>ICH (%)</th>
<th>SAH (%)</th>
<th>UND (%)</th>
<th>CT (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Li 1985</td>
<td>1983 Six cities</td>
<td>51</td>
<td>44</td>
<td>2</td>
<td>3</td>
<td>Few</td>
</tr>
<tr>
<td>Li 1989</td>
<td>1984 22 rural populations</td>
<td>48.6</td>
<td>44.7</td>
<td>3.9</td>
<td>2.8</td>
<td>Unknown</td>
</tr>
<tr>
<td>Wu 2003</td>
<td>1984-93 16 populations</td>
<td>10-64</td>
<td>25-64*</td>
<td>25-64*</td>
<td>0-65</td>
<td>49</td>
</tr>
<tr>
<td>Zhang 2003</td>
<td>1991-2000 17 populations</td>
<td>49.3</td>
<td>23.9</td>
<td>1.5</td>
<td>25.3</td>
<td>75.3</td>
</tr>
<tr>
<td>Jiang 2006</td>
<td>1991-2000 Three cities</td>
<td>43.7-78.9</td>
<td>18.8-47.6</td>
<td>0.1-4</td>
<td>1.4-7.8</td>
<td>79.6-98.6</td>
</tr>
</tbody>
</table>

CI=cerebral infarction, ICH=intracerebral haemorrhage, SAH=subarachnoid haemorrhage, UND=undefined. *Data given as total haemorrhagic strokes (ICH and SAH combined).

Antiplatelet therapy

- Cilastazol (phosphodiesterase 3 inhibitor)
 - Antiplatelet and vasodilator
 - Lower rates of ICH than aspirin
- Cochrane meta-analysis of 3400 Asian pts with TIA or stroke
 - Cilastazol RR 0.72 (95% CI 0.57 to 0.91) for all strokes
 - RR 0.26 (95% CI 0.13 to 0.55) for ICH

Kamal et al. Cochrane Database of Systematic Reviews 2011, 1.
BP control

- HTN strongest risk factor for AIS and ICH in Asians
- Asians have higher salt intake and HTN more likely to be salt-sensitive
- CCBS (esp amlodipine) → superior BP reduction and stroke prevention in Asians compared to other classes of BP meds
- Scientific statement from Asian Pacific Heart Association

Case

• 27 Korean F presents with recurrent brief episodes aphasia and R weakness

• History of stroke at age 13- L weakness, fully recovered
What’s the diagnosis?

MOYA-MOYA DISEASE
Moya-Moya Disease

- Acquired Intracranial Vasculopathy
- Progressive occlusion of terminal ICAs & proximal MCA/ACA
- Network of small collateral vessels form
 - Ischemic Stroke
 - Hemorrhage (aneurysm)
 - Epilepsy
- 2 age peaks
 - Most common 10-14yo
 - Smaller peak 40-50yo
Moya-Moya Disease

- Cause is unknown
- Familial occurrence in 10-15% of cases
- High incidence in Japanese and Asian populations
 - 0.35-0.94 per 100,000 incidence in Japan
 - 0.086 per 100,000 incidence in US
 - 0.28 per 100,000 in Asian Americans
 - RR 4 in Asian-Americans compared to Caucasian Americans
Pathophysiology

- Fibrocellular thickening of intima
- Undulation of the elastic lamina
- Attenuated media
- Microaneurysms
Moya-Moya Disease

Diagnostic criteria:

• Stenosis or occlusion at the terminal portion of the ICA and at the proximal ACA and MCA on MRA
• Abnl vessels in basal ganglia on MRA
• Bilateral angiographic findings
• Exclude: arteriosclerosis, autoimmune disease, tumor, cranial irradiation, down’s syndrome, head trauma, NF, meningitis
Moya-Moya Syndrome
Causes & Associations

• **Idiopathic**
 – (Moya-Moya Disease)

• **Inherited**
 – NF & TS
 – Turner & Down syndrome
 – Retinitis pigmentosa
 – Sickle-cell disease

• **Infectious**
 – Meningitis (anaerobic, TB)
 – Tonsillitis, Pharyngitis
 – EBV
 – Propionibacterium acne

• **Autoimmune**
 – SLE
 – Sjogren syndrome
 – PAN
 – Kawasaki disease

• **Others**
 – OCP
 – Tobacco & EtOH use
 – Craniocerebral trauma
 – Parasellar neoplasm
 – Atherosclerosis
 – Arterial dissection
 – FMD
 – XRT
Symptoms

- Recurrent TIAs
- Infarcts – mostly small, subcortical, watershed & frontal lobe
- Vascular dementia
- Movement disorders (hemichorea)
- Seizures
- Hemorrhage
- Poor prognosis w/ progressive disease
Hemorrhagic Moya-moya

• More common presentation in adults
• Risk increases > 45 y
• High rate of rebleeding
• 61% have recurrent hemorrhages

Neurosurgery 2003; 52: 1049
Treatment

• Search for and treat causative disorder
• Antiplatelets (no ICH)
• Avoid anticoagulants
• Surgical Procedures
 – Recurrent ischemia or dementia
 – Direct Bypass
 • STA-MCA anastamosis
 – Indirect Bypass
 • Encephaloduroarteriosynangiosis
 – Combined approaches
Moya-Moya

Systematic review of 55 studies/1156 kids w/ revascularization

• Symptomatic benefit in 87%
• Perioperative stroke rate of 4.4%
• 73% got indirect revascularization, 23% combined approach
 – No significant difference between groups
Thanks! Questions?