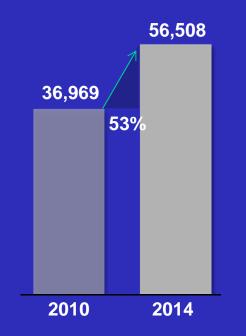
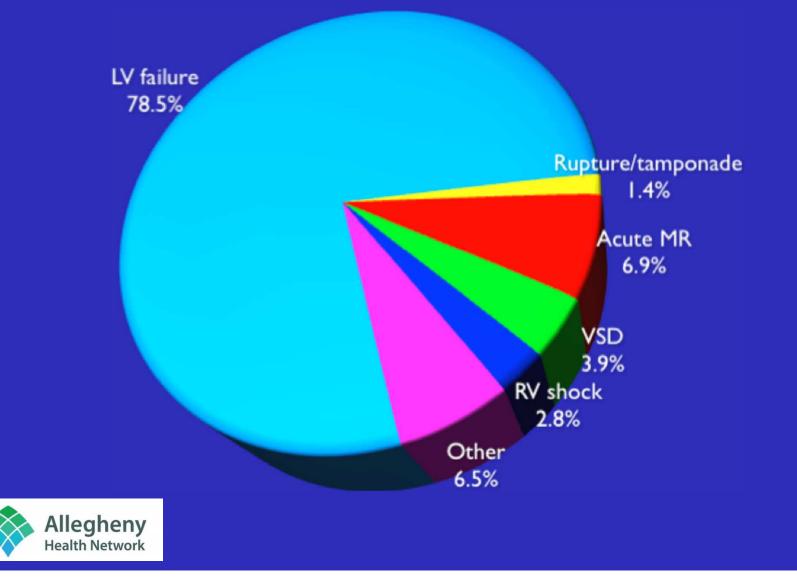

Multidisciplinary Approach to Cardiogenic Shock


Azam Hadi M.D.

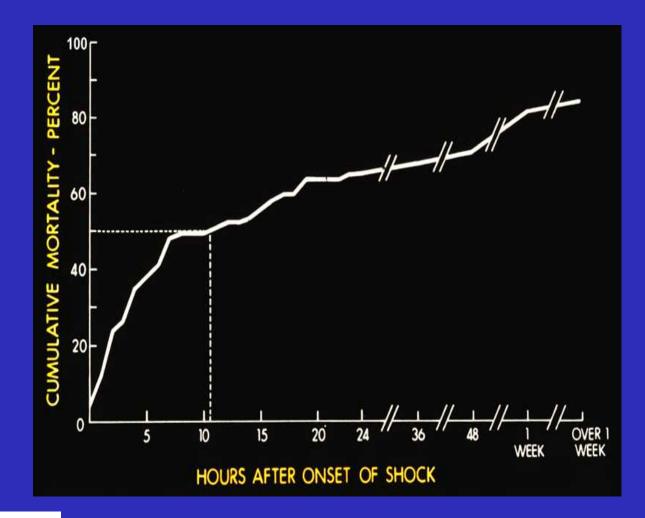
Incidence of Cardiogenic Shock Growing


1. Dhaval Kolte et al. J Am Heart Assoc 2014 NATIONWIDE INPATIENT SAMPLE 2. Centers for Medicare and Medicaid database. MEDPAR FY14 STEMI Cardiogenic Shock in Medicare Age Increasing²

Age <a>65 only, excludes non-Medicare population

History: Who gets Cardiogenic Shock?

CARDIOGENIC SHOCK — BACKGROUND


TIMEFRAME FOR DEVELOPMENT OF CARDIOGENIC SHOCK

- Median time frame for development of cardiogenic shock is 10 hours into AMI
- 39.6% develop cardiogenic shock within 6 hours
- 63.2% develop cardiogenic shock within 24 hours
- The majority of patients develop shock after arrival to the hospital

Cardiogenic Shock is Bad

Allegheny Health Network

Definition

clinical criteria:

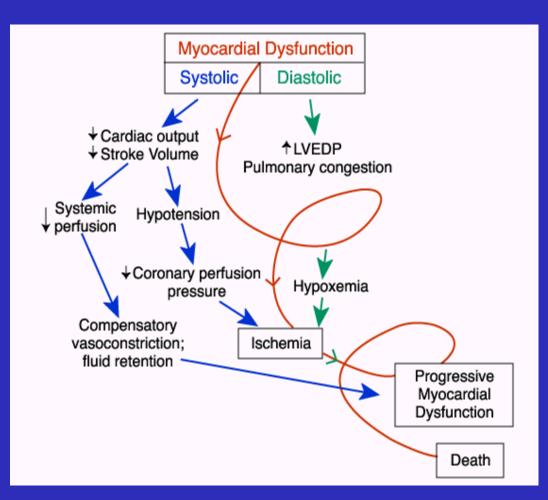
- hypotension (SBP of <90 mm Hg for at least 30 minutes or the need for supportive measures to maintain a sbp of ≥90 mm Hg) and
- end-organ hypo-perfusion (cool extremities or a urine output of <30 ml/hr, and a heart rate of ≥60 beats per minute).

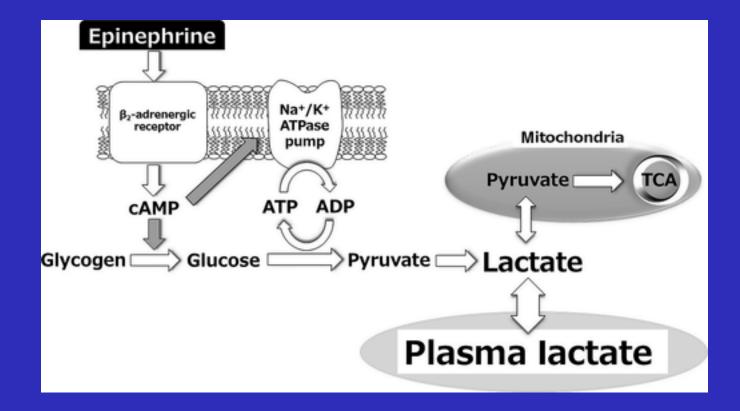
hemodynamic criteria:

- cardiac index of no more than 2.2 liters/min/sq.m BSA
- pulmonary-capillary wedge pressure of at least 15 mm Hg.

CARDIOGENIC SHOCK — BACKGROUND

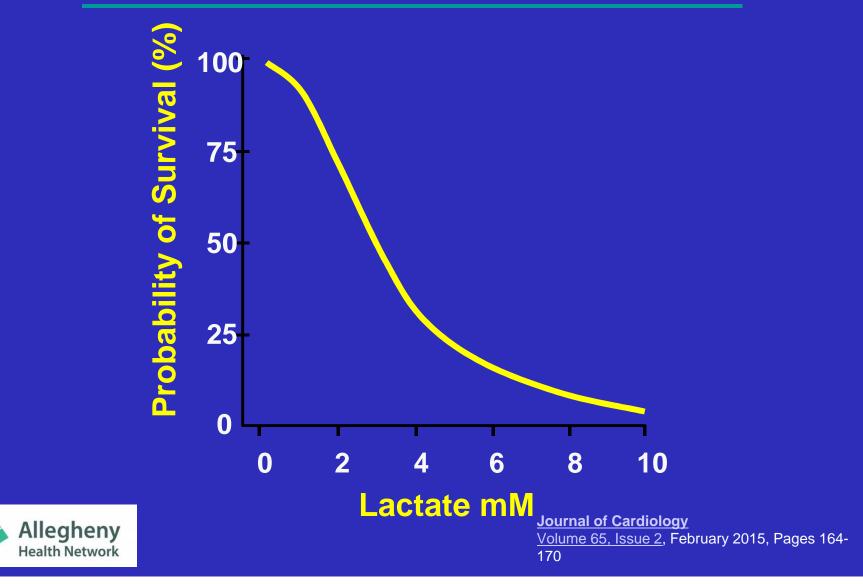
STEMI - CATH


- HR=105, B/P= 98/58 (69)
- Few crackles in lungs
- PA 45/25
- PCWP 24
- CVP 13
- CO 3.5
- SVR 1500


Schematic

- LVEDP elevation
 Hypotension
 Decreased coronary
 - perfusion
- ≻Ischemia
- Further myocardial dysfunction
- >Endorgan hypoperfusion

Lactate, a useful marker for disease mortality and severity


Volume: 3, Issue: 4, Pages: 293-297, First published: 16 May 2016, DOI: (10.1002/ams2.207)

Pathophysiology of Shock

Hypotension + LVEDP \rightarrow Myocardial Hypoperfusion \rightarrow LV dysfunction \rightarrow **Systemic lactic acidosis** \rightarrow Impairment of non-ischemic myocardium \rightarrow worsening hypotension.

Probability of Survival Based On Arterial Blood Lactate

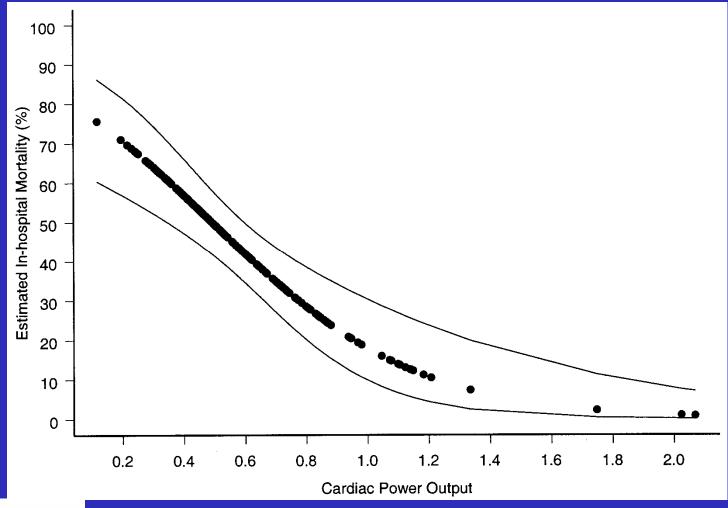
BNP and prognosis

Table 4 Patient Outcomes Stratified by BNP Levels

		BNP Quartile			
Parameter	Q1 <430 (n = 12,161)	Q2 430-839 (n = 12,146)	Q3 840-1,729 (n = 12,156)	Q4 ≥1,730 (n = 12,166)	p Value
In-hospital mortality (%)	1.9	2.8	3.8	6.0	<0.0001
Mechanical ventilation (%)	3.1	3.7	3.9	4.1	.0002
Cardiopulmonary resuscitation (%)	0.6	0.9	1.2	1.7	<0.0001
ICU admission (%)	12.8	15.4	16.6	19.6	<0.0001
Length of stay, mean, median, 25th, 75th (days)	5.2 4.0, 2.7, 6.2	5.7 4.3, 2.9, 7.0	5.9 4.5, 3.0, 7.1	6.3 4.9, 3.0, 7.8	<0.0001*
Asymptomatic at hospital discharge (%)	48.8	49.6	48.0	43.6	<0.0001

Fonarow GC et al. J Am Coll Cardiol 2007; 49(19):1943-1950

Cardiogenic Shock Admission Quality Metric


Cardiology Cardiogenic Shock Manage My Version *

- Shock order set
- Consult activated

▼ General	
▼ Vital Signs	
PA Pressure Routine, Every 4 hours First occurrence Today at 1042 for 72 hours Fick/Thermodiluation hemodynamics every 4 hours X 72 Hours	
▼ Nursing Assessments	
Strict Intake And Output Routine, Every hour First occurrence Today at 1042 for 72 hours	
▼ Physician Consults	
Inpatient Consult to Advanced CHF	
 Inpatient consult to Cardiogenic shock Details 	
▼ Labs	
▼ Chemistry Basic	
Lactic acid, venous, whole blood Routine, Every 6 hours First occurrence Today at 1042 Last occurrence on Thu 7/26 at 0000 for 72 hours	
Basic Metabolic Panel Routine, Every 6 hours First occurrence Today at 1042 Last occurrence on Thu 7/26 at 0000 for 72 hours	
Blood Gas, Mixed Venous Routine, Every 4 hours First occurrence Today at 1042 Last occurrence on Thu 7/26 at 0400 for 72 hours	
▼ Other Tests	
▼ Cardiac Studies	
Chocardiogram Transthoracic TTE	

Cardiac power is the strongest hemodynamic correlate of mortality in cardiogenic shock

<u>JACC Volume 44, Issue 2, 21 July 2004, Pages 340-348</u>

CARDIOGENIC SHOCK – BACKGROUND NOW LET'S TAKE A LOOK AT THIS PATIENT 4-6 HOURS LATER IN THE CCU

BP 80/40 (55), HR – 135

becoming agitated, crackles more prominent

PA 45/25

PCWP 24

CVP 15

CO 3

SVR 900

Has not urinated since admission

12 Lead EKG shows no changes

CARDIOGENIC SHOCK — BACKGROUND

OUR PATIENT 4-6 HRS LATER

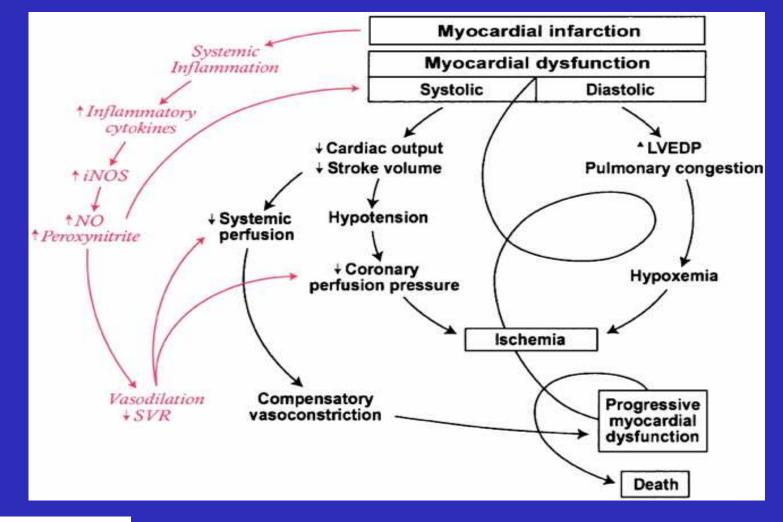
- 100% non-rebreather oxygen mask , BP 80/45 (55)
- Fluid bolus 250cc NS
- Dopamine 10 mcg/kg/min
- Dobutrex 5 mcg/kg/min
- Lasix 40 mg IV

Hemodynamics

PA 45/25 (32)

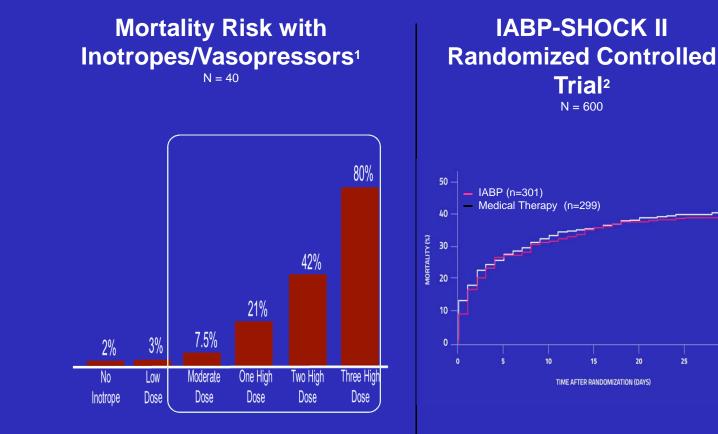
PCWP 26

CVP 25


CO 3

SVR 600

Pathophysiology: Downward Spiral


Limitations of Conventional Therapy

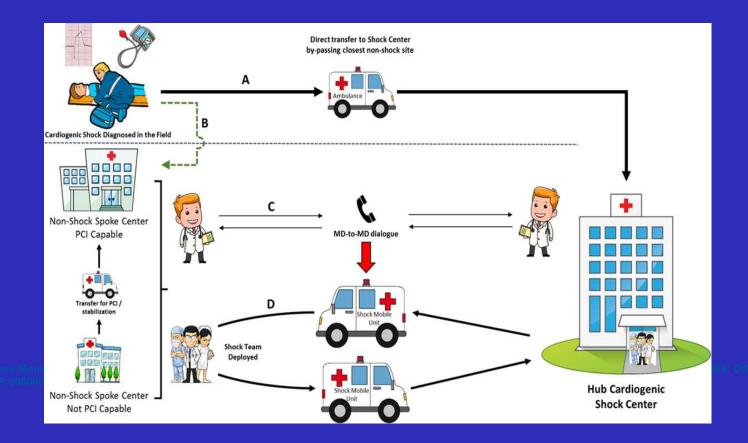
41.3%

39.7

%

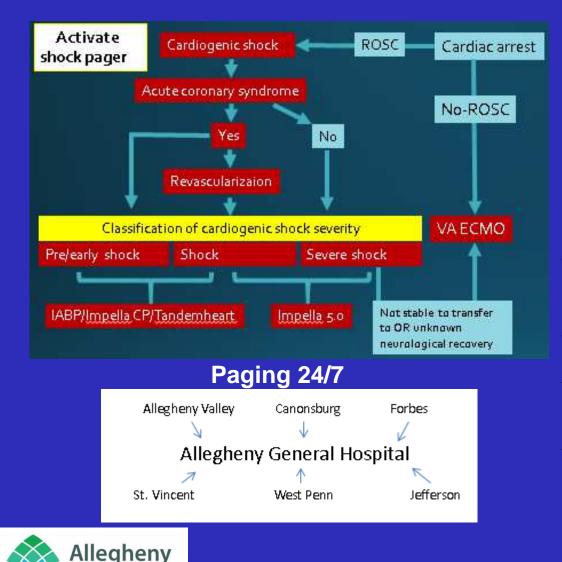
30

1- Samuels LE et al , J Card Surg. 1999 2- Thiele H et al. NEJM 2012 - Clinicaltrial.gov # NCT00491036



CARDIOGENIC SHOCK A CHANGE IN PARADIGM

DOOR TO BALLOON DOOR TO SUPPORT



New Shock Paradigm

Cardiogenic Shock Program

Health Network

Goals of Shock Program:

- Early recognition of Cardiogenic Shock
- Appropriate escalation of care
- Optimal and timely utilization of resources e.g. Temporary MCS
- Improve patient outcomes

Detroit Shock Initiative

- July 2016 and February 2017, 4 metro Detroit sites
- 41 patients, avg age 65 ± 14 years, Prior to MCS,

93% vasopressors/inotropes,

>40% cardiac arrest

17% were under active ACLS while MCS

- Door to support times avg 83 ± 58 minutes
- 71% of patients reduced levels of inotropes and vasopressors <24-hrs of index procedure

Survival to explant 85% vs 51% (p < 0.001)

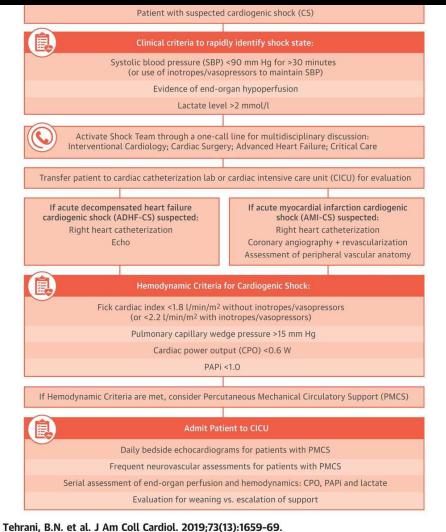
Allegheny Health Network

Quality Metrics

✓ Establish GOC

Time to Optimal Support

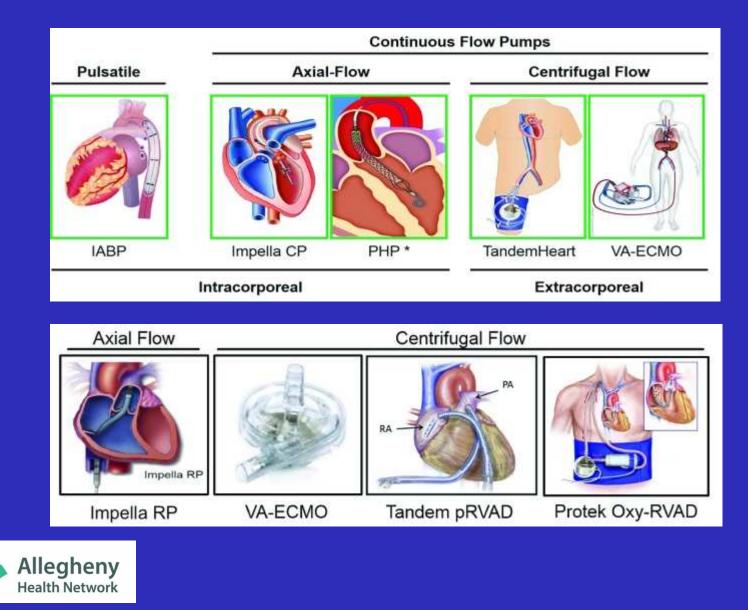
- Utilization of resources e.g. Temporary MCS
- <u>Multidisciplinary Team</u>
- Prevent latrogenic Harm
- Improve patient outcomes
 - 30 day mortality
 - ICU length of stay



https://encryptedtbn0.gstatic.com/images?q=tbn:ANd9GcQFEMPDhizq0i5Yv3k8UmHLwCtP_Syd_703hTnZEFYD BOdVixEE

Cardiogenic Shock Algorithm

Behnam N. Tehrani et al. J Am Coll Cardiol 2019;73:1659-1669



Who do you want on your Shock Team?

Advanced HF Specialist
 Interventional Cardiologist
 Cardiac Surgeon
 Critical Care / Intensivist (MD)
 Critical Care Nursing Team
 Palliative Care
 CCU Pharmacist
 Physical and Occupational Therapy
 Nutritionist
 Chaplain

Variety Of Devices

Quality Metrics

Time to Optimal Support

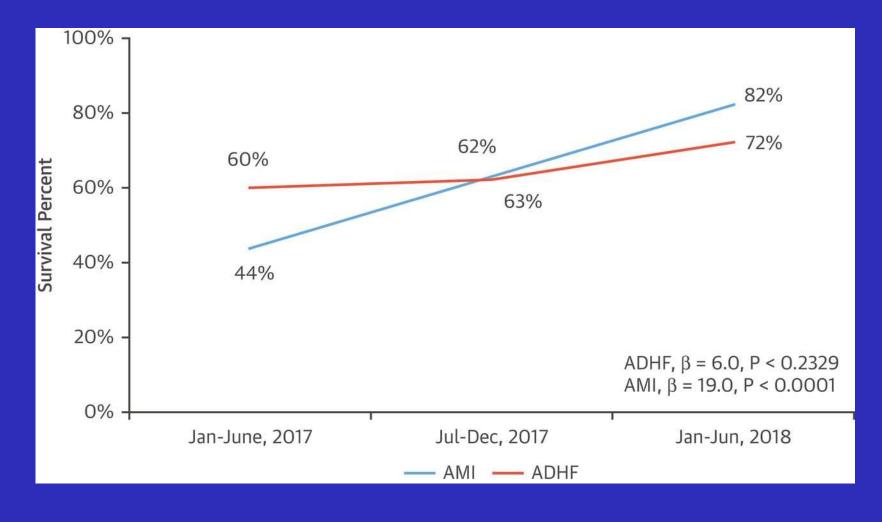
- Utilization of resources e.g. Temporary MCS
- Multidisciplinary Team

Prevent latrogenic Harm

- Improve patient outcomes
 - 30 day mortality
 - ICU length of stay
 - Establish GOC

Check list for Devices

CICU DAILY	Patient Name:
ROUNDING CHECKLIST	MRN:
Mechanical Circulatory Support	 Position Site of insertion Anticoagulation Extremity


Quality Metrics

Time to Optimal Support

- Utilization of resources e.g. Temporary MCS
- Multidisciplinary Team
- Prevent latrogenic Harm
- Improve patient outcomes
 - 30 day mortality
 - ICU length of stay
 - Establish GOC

Improve Patient Outcomes

Behnam N. Tehrani et al. J Am Coll Cardiol 2019;73:1659-

Study of Outcomes- Paucity of Data

56 vs. 55 in control comparable between the two groups.

Marginally significant lower 30-day mortality in the SHOCK TEAM group in a Cox regression model (38.9% vs. 60% in control group; hazard ratio, 0.65; confidence interval [CI], 0.41 to 1.04 in the intervention group; p = 0.07).

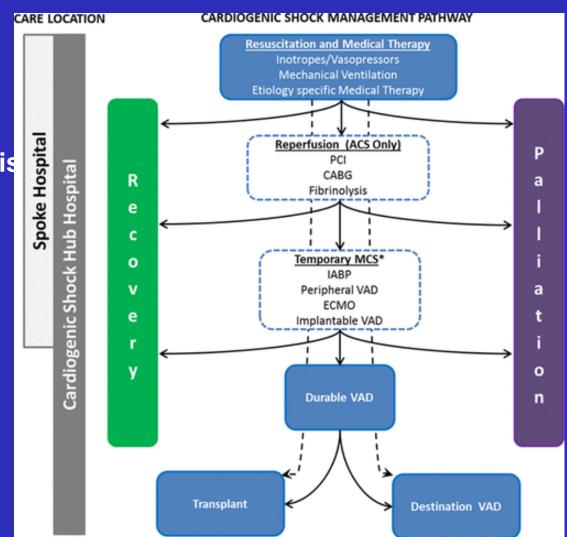

ICU stay and hospital stay also tended to be shorter in the SHOCK TEAM group (mean \pm SD, 13 \pm 13 vs. 27 \pm 59 days in control, p= 0.33 and 16 \pm 15 vs. 31 \pm 59 days in control, p= 0.30

Utah Cardiac Recovery (UCAR) "Shock Team ("Shock-team" cohort) and compared with the immediately preceding 40 patients ("Control" cohort

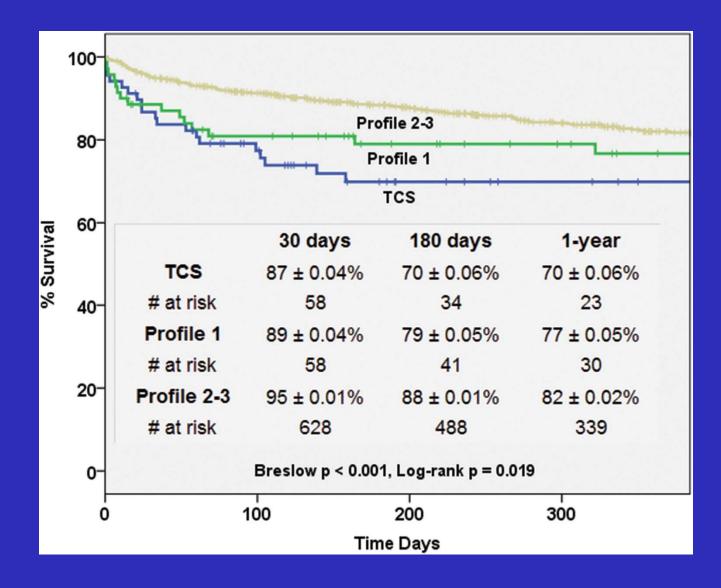
Shock Team" cohort had at presentation shock liver (p=0.01), acute renal failure (p=0.04), lower ejection fraction (p=0.05), higher right atrial pressure (p=0.04) and underwent cardiopulmonary resuscitation (p=0.05). Despite a sicker population comprising the "Shock Team", the primary outcome of 30-day mortality did not show statistical significant difference in a Cox regression model. Correspondingly, "Shock to Support" time revealed faster MCS utilization on "Shock Team" (9 \pm 30 Vs 16 \pm 28 hrs., p=0.21).

437 patients were in the control and 110 in the protocol group. Baseline characteristics were similar and etiology of cardiogenic shock (i.e., post MI, acute myocarditis, acute systolic heart failure, etc) were similar in both groups. The protocol group had significant reduction in-hospital mortality i.e., 35% (38/110) vs. 45% (197/437) (*P* value < .05). The utilization of advanced mechanical support was significantly higher in the protocol group i.e., 30/110 vs. 55/437 in the control group (*P* value < .0003).

Quality Metrics


Time to Optimal Support

- Utilization of resources e.g. Temporary MCS
- Multidisciplinary Team
- Prevent latrogenic Harm
- Improve patient outcomes
 - 30 day mortality
 - ICU length of stay
 - Establish GOC


Cardiogenic Shock is Multi-....

- Multidisciplinary approach
- Hub and Spoke
- Protocols and Algorithm

Sean van Diepen. Circulation. Contemporary Management of Cardiogenic Shock: A Scientific Statement From the American Heart Association, Volume: 136, Issue: 16, Pages: e232-e268, DOI: (10.1161/CIR.00000000000525)

"There's no easy way I can tell you this, so I'm sending you to someone who can."

https://images.fineartamerica.com/images/artworkimages/mediumlarge/1/there-is-no-easy-way-i-can-tell-you-this-peter-c-vey.jpg

CARDIOGENIC SHOCK — BACKGROUND CARDIOGENIC SHOCK RISK FACTORS

Four risk factors account for >85% of the

predictive information needed to determine if a patient is at high risk to develop CS:

- Age
 - Single greatest risk factor
 - For every ten year increase in age, the risk of developing shock increases by 47%
- Systolic Blood Pressure
- HR
- Killip Class

CS patients were more likely to have a history of hypertension, dyslipidemia, and prior coronary angioplasty, non inferior MI

Conclusion

- Cardiogenic Shock is Multi-.....
- Multidisciplinary approach
- Hub and Spoke
- Protocols and Algorithm

