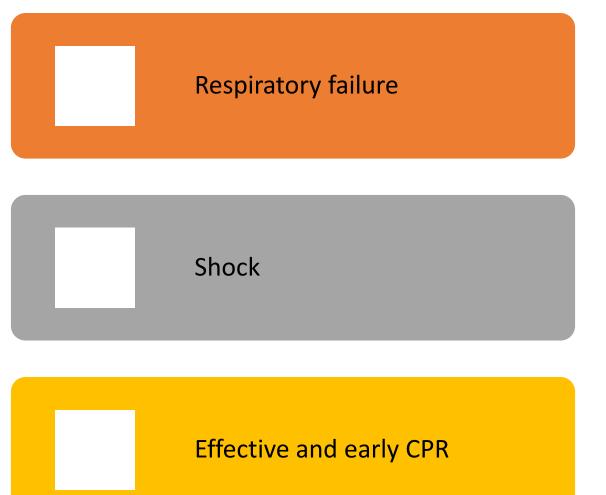
PEDIATRIC RESUSCITATION

Mioara Manole, MD

Pediatric Emergency Medicine Children's Hospital of Pittsburgh

Out of hospital cardiac arrest


Not witnessed (long time without CPR) No preexisting conditions Etiology: Respiratory Bystander CPR late and less effective

In hospital cardiac arrest

Witnessed Preexisting pathology Etiology: Cardiac Immediate high quality CPR

Pediatric Resuscitation =PREVENTION

Prearrest care- In hospital

- Medical rapid response teams
 - May prevent cardiac and respiratory arrest
- Pediatric early warning scores (PEWS)
 - May be used, but effectiveness not established

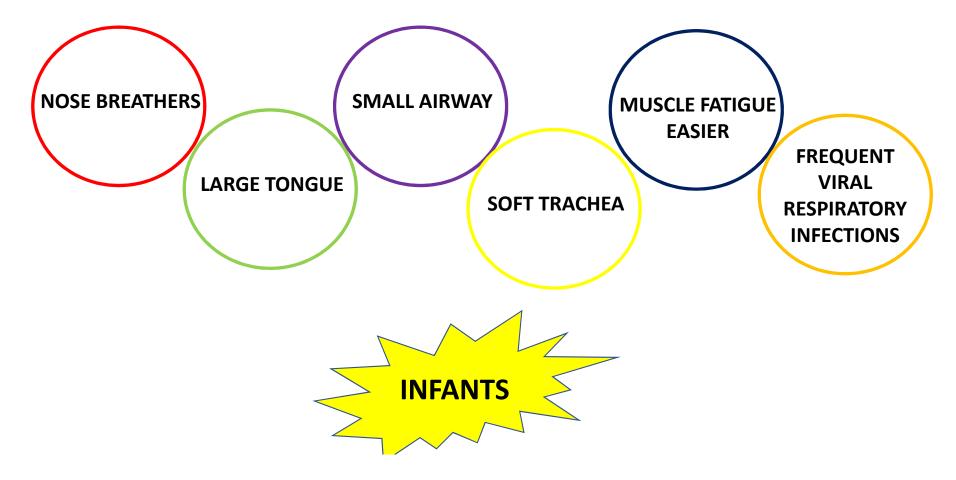
BLS Respiratory failure- anticipate

- Increased respiratory rate
- Signs of respiratory distress
 - Nasal flaring
 - Retractions
 - Seesaw breathing
 - Grunting
- Diminished breath sounds
- Gasping
- Cyanosis

Pediatric Anatomy &Physiology

Young infants

• obligate nose breathers, obstruction of nasal passages causes distress


Young children

• less reserve, deteriorate quickly

Children

 more flexible chest walls, less developed chest muscles, diaphragm more prone to fatigue

RESPIRATORY FAILURE OCCURS MORE COMMONLY IN CHILDREN

Anticipate Pediatric airways of concern

- Altered sensorium
 - Upper airway relaxes
- Extra soft airway tissue (Laryngomalacia)
 - Obstruction with viral illnesses
- Malformations of the tongue and mandible
 - Down syndrome
- Child with noisy breathing
 - Croup, tracheitis, retropharyngeal abscess, burns, allergic reactions
- Cervical spine immobilization

Failproof interventions for respiratory distress

- Position of comfort: in mom's arms, sitting up
 - Stridor: Croup, tracheitis
- Nasal suctioning
 - Infants with bronchiolitis
- Oxygen
 - Nasal canula: infants with bronchiolitis
 - Blow by: older children
 - Face mask held by mom in front of the face

BLS Shock- recognize

Compensated

- Tachycardia
- Cool pale extremities
- Prolonged cap refill
- Weak peripheral pulses
- Normal blood pressure

Decompensated

- Depressed mental status
- Decreased urinary output
- Tachycardia
- Weak central pulse
- Deterioration in color (mottling)

*No single sign confirms the diagnosis- integrate symptoms and signs

BLS Hypotension: systolic blood pressure values

- Neonates
- Infants (1mo-1 year)
- Children (1-10 years)
- Adolescents (>10 years)

- <60 mm Hg
- <70 mm Hg
- <70 + 2(age) mmHg (years)

<90 mm Hg

Prearrest care Septic shock

- Previous recommendation: early and rapid administration of IVF
- Current recommendations:
 - Administration of 20 ml/kg bolus is reasonable
 - Reassess after each bolus
 - Either crystalloids or colloids are effective
- Why the recommendations changed
 - One large study in a limited resource area showed increased mortality with 20-40 ml/kg fluid boluses when compared with maintenance fluid alone
 - Thus, in areas with no intensive care support (mechanical ventilation, pressors) gentle approach to intravenous fluids is recommended

Prearrest care Hypovolemic shock

- Use crystalloids: lactated Ringer's or normal saline as the initial bolus
- Treat shock with 20 mL/Kg bolus even if blood pressure is normal
 - Compensated shock

Prearrest care Myocarditis

- Avert cardiac arrest
- Consider pre-cardiac arrest extracorporeal membrane oxygenation (ECMO) use

Pediatric cardiac arrest

- Respiratory
- Respiratory
- Respiratory
- Cardiac

Pediatric CPR

VENTILATIONS ARE IMPORTANT RATE FOR 2 RESCUERS 15:2

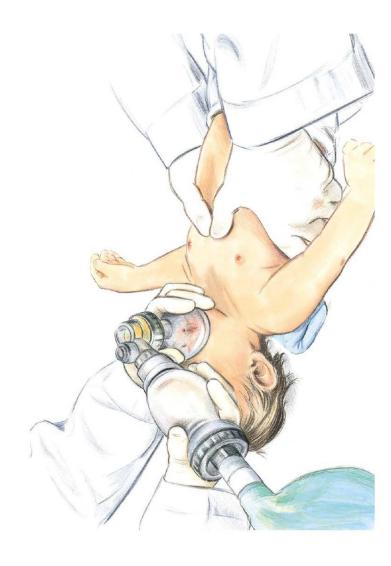
When do we use adult guidelines in children?

- At Puberty
 - physical characteristics are easier to identify than specific ages
- Puberty:
 - Girls: Breast development
 - Boys: Axillary hair

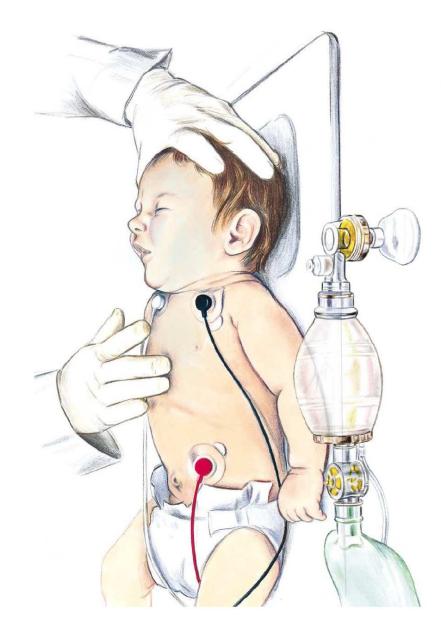
BLS Simultaneous actions

- Chest compressions- one rescuer
- Ventilations- another rescuer
- Monitor, defibrilator, iv, prepare medication-third rescuer

*ventilations are important in pediatrics: asphyxial cardiac arrests


BLS Assure GOOD Quality of Compressions

- Push hard
 - 1/3 the AP diameter of the chest
 - 1 ½ in in infants= 4 cm
 - 2 in in children= 5 cm
- Push fast
 - 100 compressions/min
 - Rotate compressors every 2 minutes
- Allow full recoil
- Minimize interruptions
- Firm surface
- *Don't hyperventilate


BLS Compressions

- Is there a need to assist circulation
 - assure adequate oxygen & ventilation
 - HR < 60 with poor perfusion
- Chest compressions
 - 1 rescuer 30:2
 - 2 rescuer 15:2
 - 1/3 depth of chest

Two thumb-encircling hands chest compression in infant (2 rescuers).

Two-finger chest compression technique in infant (1 rescuer)

BLS Compressions in monitored patients

• Use end tidal CO₂ to guide chest compressions

BLS Oropharyngeal and nasopharyngeal airways

- Oropharyngeal
 - Absent gag reflex
 - Use correct size
 - small may push tongue back
 - large may obstruct airway
- Nasopharyngeal
 - Gag reflex present
 - Use correct size
 - short is not effective
 - long may obstruct airway
 - Suction as needed: may become obstructed with secretions

BLS Laryngeal Mask Airway (LMA)

- Acceptable to be used by experienced providers when:
 - Bag Valve Mask is ineffective
 - Endotracheal intubation is not possible

BLS Oxygen

• Reasonable to ventilate with 100% oxygen during CPR

• After return of spontaneous circulation, wean to O₂ Sat 94-99%

Why:

*there is insufficient information on the optimal oxygen concentration

*use enough oxygen to oxygenate but avoid hyperoxia

BLS Pulse oximetry

 If the patient has a perfusing rhythm, monitor O₂ saturation with pulse oximeter

BLS Bag-mask ventilation

Bag-mask ventilation might be safer than endotracheal intubation for

- Short periods
- During out-of-hospital resuscitation

*use proper mask

*provide tight seal

*assess effectiveness of ventilations- chest rise

BLS Bag-mask ventilation

*use only the force and tidal volume to make the chest rise visibly

-avoid gastric inflation

*inspiratory time 1 sec

-Squeeze-release-release

*if the child is intubated or LMA:

-1 breath every 6 seconds (10 breaths per minute) *if perfusing rhythm

-1 breath every 3-5 sec (12-20 breaths per minute)

BLS Bag-mask ventilation

Two person BVM

-better seal

Cricoid pressure in the unresponsive victim (may require a 3rd person)

-reduces gastric inflation

-avoid excessive cricoid pressure (may obstruct trachea)

*may need to discontinue during intubation (if view is distorted)

BLS Ventilation with tracheostomy

- Ventilate through tracheostomy
- If ineffective: suction tracheostomy tube
- If suctioning ineffective:
 - replace tracheostomy tube
 - place endotracheal tube
- If nothing works
 - Mouth to stoma or mask to stoma ventilations
 - Occlude stoma and perform bag-mask ventilations

BLS Endotracheal intubation

- Only if experienced
- Both cuffed and uncuffed tubes are ok
- Cuffed tubes may decrease risk of aspiration:
 - Cuff inflation pressure 20-25 mmHg
 - Formula:
 - Uncuffed 4 + age/4
 - Cuffed 0.5 mm smaller

*think this way: start at 4 (uncuffed) in infants

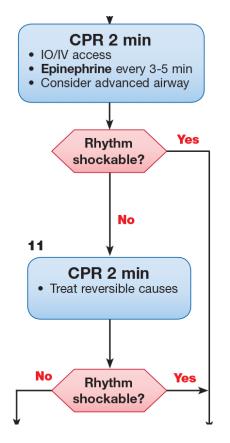
BLS Verify endotracheal tube position

- Bilateral chest movement
- Equal breath sounds
- End tidal monitor- color change or tracing
- Pulse oximeter read (if perfusing rhythm)
- Direct laryngoscopy (if uncertain)
- Chest x ray (in hospital)

*if end tidal CO₂ is not detected in CA, confirm tube position with direct laryngoscopy

*low pulmonary blood flow may cause absence of exhaled CO₂

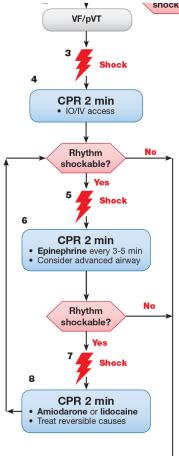
Atropine for pre-medication during intubation


- Previous recommendations:
 - Use atropine
 - To prevent bradycardia (hypoxia, vagal reflex laryngoscopy)
- Current recommendations:
 - May be reasonable to use atropine
 - 0.02 mg/kg

BLS Newborns CPR rates

• 15:2 if resuscitated in the prehospital, ED, PICU

*newborn CPR is 3:1 in NICU or delivery room *for ease of training, 15:2 is recommended

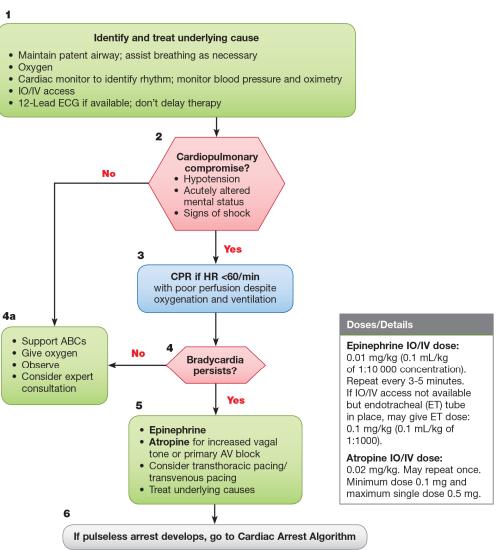

ACLS Pulseless arrest- Asystole

Drug Therapy

- Epinephrine IO/IV dose: 0.01 mg/kg (0.1 mL/kg of 1:10 000 concentration). Repeat every 3-5 minutes. If no IO/IV access, may give endotracheal dose: 0.1 mg/kg (0.1 mL/kg of 1:1000 concentration).
 Reversible Causes
- Hypovolemia
- Hypoxia
- Hydrogen ion (acidosis)
- Hypoglycemia
- Hypo-/hyperkalemia
- Hypothermia
- Tension pneumothorax
- Tamponade, cardiac
- Toxins
- Thrombosis, pulmonary
- Thrombosis, coronary

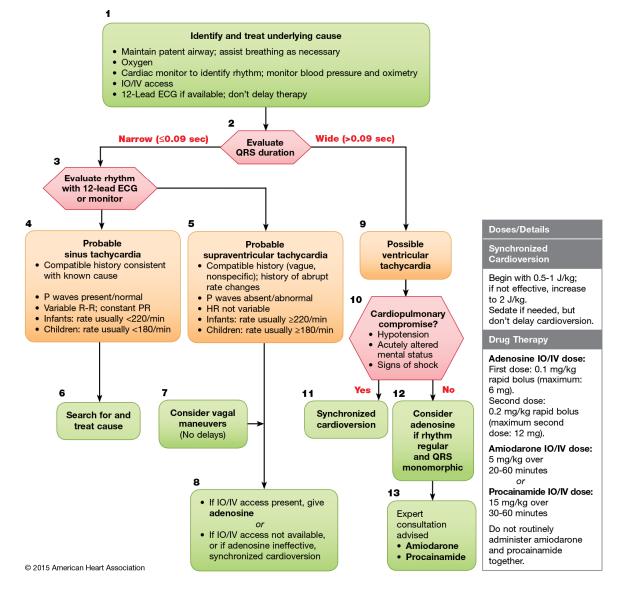
ACLS Ventricular fibrillation

Shock Energy for Defibrillation


First shock 2 J/kg, second shock 4 J/kg, subsequent shocks ≥4 J/kg, maximum 10 J/kg or adult dose

Drug Therapy

- Epinephrine IO/IV dose: 0.01 mg/kg (0.1 mL/kg of 1:10 000 concentration). Repeat every 3-5 minutes.
 If no IO/IV access, may give endotracheal dose: 0.1 mg/kg (0.1 mL/kg of 1:1000 concentration).
- Amiodarone IO/IV dose: 5 mg/kg bolus during cardiac arrest. May repeat up to 2 times for refractory VF/pulseless VT.
- Lidocaine IO/IV dose: Initial: 1 mg/kg loading dose. Maintenance: 20-50 mcg/kg per minute infusion (repeat bolus dose if infusion initiated >15 minutes after initial bolus therapy).


ACLS Bradycardia

Pediatric Bradycardia With a Pulse and Poor Perfusion Algorithm

Pediatric Tachycardia With a Pulse and Poor Perfusion Algorithm

ACLS Tachycardia with a pulse

ACLS Special situations

- Trauma: do not hyperventilate
- Past history of cardiac condition: consider ECMO initiation
 - EMS: notify hospital to prepare
- Family presence should be encouraged whenever possible
- Termination of resuscitation efforts: no reliable predictors of outcome to guide termination of resuscitation efforts
 - Bystander CPR, short interval form collapse to CPR, witnessed collapse increase chances of successful resuscitation

Post resuscitation care

- Target normoxia
- Target normal end tidal CO₂
- Remove IO after other intravenous access is available
- Maintain blood pressure at > 5th percentile for age
 - Fluids, inotropic agents
- Temperature management
 - Avoid hyperthermia
 - 5 days of normothermia (36-37.5 C) OR
 - 2 days of hypothermia (32-34 C) + 3 days of normothermia (36-37.5 C)
- SIDS: refer families for screening of arrhythmia