

8° 73° 95° • ST elevation consider inferolateral **Objectives**

112

13

ecific intraventricular block

Define STEMI "Equivalent"

P-QRS-T Axes

avl

- Identify ischemic/concerning ECG findings
- Recognize ECG findings associated with bad outcomes
- Remember the forgotten 12th lead (Respect aVR!) aVF

37 yo male, inspiratory chest pain

Starting off on a familiar road....

SR, rate of 50, LVH, pericarditis

Pericarditis

- Absence of reciprocal change
- + friction rub favors pericarditis
- Absence of ST depression
- Widespread PR depression
- Widespread, non anatomic STE
- 10-15% of MI associated with pleuritic/positional pain
- Concave upwards STE

Pericarditis

- Caution with SLE/RA patients
- Caution with HIV
- NSAID treatment
- Follow up
- Role for ED bedside echocardiography

Pericarditis

Pericarditic Pitfalls

- Be mindful of patient age
- Take a thorough history
- Do not diagnose pericarditis in the presence of reciprocal change or ST depression

Ugly STE

Images from "EKG Interpretation" Michelle Lin, MD

STE: Concave vs Convex

- Non concave STE favors ACS
- Concave STE does not rule ACS out!
- History important

- Reciprocal change
- Convex STE in anatomic distribution

Killer ECG:

"I was playing basketball when suddenly...."

18 yo male, exertional syncope

Hypertrophic Cardiomyopathy

- Younger patients
- Family history important
- ECG abnormalities in 90%
- May present as sudden death
- Chest pain, shortness of breath

HCM ECG

- LVH (high left ventricular voltage)
- T wave inversions
- Dysrhythmia
- ST segment changes

37 yo male, syncopal episode

SR, rate 86, Brugada Syndrome

The Brugada Syndrome

- Atypical STE in precordial leads
- Type 1 ECG pattern is diagnostic
- Young, predisposition to ventricular dysrhythmias
- "Channelopathy"
- Common males, asian descent, 30-50 years
- Syncope is presenting complaint

The Brugada Syndrome

Brugada Bottom Line

- Syncope
- Atypical STE
- Incomplete RBBB
- Type 1 STE and no symptoms ?

24 yo female, chest pain and dyspnea

24 yo female, chest pain and dyspnea

ECG Features of Pulmonary Embolism

- Tachycardia
- Rightward axis
- Incomplete RBBB
- "Right heart strain"
- S1 Q3 T3

The classical S1-Q3-T3 pattern of PE: S-wave in lead I (small arrow), Q-wave in lead III (large arrow), and inverted T-wave in lead III (arrow head)

ECG Features of Pulmonary Embolism

SIMULTANEOUS T-WAVE INVERSIONS IN ANTERIOR AND INFERIOR LEADS: AN UNCOMMON SIGN OF PULMONARY EMBOLISM

Michael D. Witting, MD, MS, Amal Mattu, MD, Robert Rogers, MD, and Christian Halvorson, BA

Unmatched case control study

- •97 patients with PE
- •89 with ACS
- •105 with non cardiac chest pain

Michael D. Witting, MD, MS, Amal Mattu, MD, Robert Rogers, MD, and Christian Halvorson, BA

AN UNCOMMON SIGN OF PULMONARY EMBOLISM

10.01 After deterioration BP 60/20mmHg aVR aVF 22 Þ

American Journal of Emergency Medicine (2013) 31, 456.c5-456.e8

Case Report

A new electrocardiogram finding for massive pulmonary embolism: ST elevation in lead aVR with ST depression in leads I and V₄ to V₆³⁴

European Heart Journal (2003) 24, 1113-1119

QR in V1 – an ECG sign associated with right ventricular strain and adverse clinical outcome in pulmonary embolism

Nils Kucher*, Nazan Walpoth, Kerstin Wustmann, Markus Noveanu, Marc Gertsch

ECGs from 151 patients suspected of having PE
75 patients with PE
Troponin, echo, BNP measured in PE group
Looked for ECG signs of right heart strain

The "Kucher" Sign

Qr In V1 a predictor of poor outcomeMost specific ECG finding

Bottom Line Predictors of Badness

- TWI anteiroly
- RBBB
- STE in aVR
- qR in V1
- Tachycardia

26 yo female, ESRD, weakness

SR, rate 90-100, Hyperkalemia

Hyperkalemia

- Peaked T waves
- Widening of QRS
- Absence of P's
- Sinusoidal rhythm

Serum K+ 8.3 mEq/L

atment of Hy

LN

Dextrose and insulin RA NaHCO3

AlbuterolLABinding resinsDialysis

60 yo female, found unconscious

Increased ICP vs AMI

Diffuse T Wave Inversion

- Cerebral ischemia
- Increased ICP
- Cardiac ischemia
- + Troponins

Some more ECGs

<u>A STEMI Equivalent</u>

Rokos IC, French WJ, Mattu A, et al. Appropriate cardiac cath lab activation: optimizing electrocardiogram interpretation and clinical decision-making for acute ST elevation myocardial infarction. *Am Heart J.* 2010 Dec; 160(6):995-1003

50 yo male, diaphoresis

SR, Inferior Wall STEMI, Posterior Extension

Posterior Wall MI

- ST depression
- Prominent R wave in precordial leads
- R/S ratio > 1 in V2
- Coexistence of inferior/lateral changes

Flipped Around

- ST depression
- Prominent R wave in precordial leads
- R/S ratio > 1 in V2
- Coexistence of inferior/lateral changes

47 yo female, chest pain resolved following NTG

SR, T wave inversion suggesting anterolateral ischemia

Wellens Syndrome

- T wave patterns in precordial leads
- Suggestive of proximal LAD lesion
- T wave inversion
- Biphasic T wave
- Invasive approach preferred

Wellens's Waves

Deeply inverted T-waves in the mid-precordial leads characteristic of Wellens' syndrome

The less common, biphasic T-wave pattern of Wellens' syndrome

• T wave pattern often persists in pain free state

The Forgotten 12th Lead

Cath lab activation ?

The Forgotten 12th Lead

STE in aVR

- Predictive of left main coronary obstruction
- Worsened outcomes
- Surgical revascularization
- Lower left ventricular ejection fraction

Dyspnea in a 73 yo male

ECG JPEDIA.ORG

LBBB and Ischemia

ECG JPEDIA.ORG

....because all LBBB's go to the cath lab?

Ischemia in LBTB

-

Sgarbossa's Criteria

Finding	Score
Concordant STE > 1mm	5
ST depression > 1 mm in V1-V3	3
Inappropriately discordant STE > 5 mm	2

•Highly specific for AMI when score-sum > 3

•Not very sensitive

•Useful as a tool to stratify ECGs in the setting of suspected ischemia

Courtesy of M.M. Meuwissen, Amphia Breda, The Netherlands

Which criteria does this particular ECG meet?

-Concordant STE -Inappropriately discordant STE

Summary of STEMI Equivalents

- Posterior wall MI "septal ST depression"
- STE in aVR
- The de Winter ST/T complex
- Sgarbossa and his LBBBs