Today's presentation is brought to you by:

American Heart Association®
Target: Aortic Stenosis™

For more information on Target: AS
visit: https://www.heart.org/en/professional/quality-improvement/target-aortic-stenosis

Edwards Lifesciences is the national sponsor of American Heart Association's Target: Aortic Stenosis
Today's Discussion

MODERATOR

Brian R. Lindman, MD, MSc
Medical Director, Structural Heart and Valve Center,
Vanderbilt University Medical Center
Undertreatment of Aortic Stenosis: Where do we stand?
June 21, 2022

Sammy Elmariah, MD, MPH, FACC, FAHA, FSCAI
Director, Interventional Cardiology Research
Associate Professor, Harvard Medical School
Interventional Cardiology and Structural Heart Disease, MGH
Disclosures

Industry Institutional Grant or Research Support
- Abbott
- Edwards Lifesciences
- Medtronic

Consulting Fees/ Honoraria
- Cardiovascular Research Foundation
- Edwards Lifesciences
- Medtronic
• Review trends in utilization of AVR for severe symptomatic aortic stenosis (SSAS)

• Discuss drivers of underdiagnosis and undertreatment of SSAS

• Strategize systems of care that would improve recognition and referral for treatment of SSAS
In 2001, 1/3 of patients with severe AS were not treated.

Has widespread adoption of TAVR met the demands of a growing population of patients with AS?
Mass General Brigham experience 2000-2017:

• We identified patients with severe AS (aortic valve area <1cm²) on transthoracic echocardiograms (n=11,993) from 2000-2017 at two large academic medical centers (MGH and BWH).
• AVR utilization investigated among patients with an indication for AVR for severe AS
• Natural language processing (NLP) models were developed and validated to identify symptoms consistent with severe AS and to identify AS-related referral and AVR refusal.
11,993 Patients with index TTE showing AVA <1 cm²

1,198 Patients excluded for missing mAVG or LVEF

Analysis cohort: 10,795 Patients

HG AS (n = 4,558)

HG-NEF (n = 4,009)

No symptoms = 1,738 (43%)

Symptoms = 2,271 (57%)

HG-LEF (n = 549)

No symptoms = 1,982 (42%)

Symptoms = 2,712 (58%)

LG AS (n = 6,237)

LG-NEF (n = 4,694)

No symptoms = 925 (60%)

Symptoms = 618 (40%)

LG-LEF (n = 1,543)

No symptoms = 1,982 (60%)

Symptoms = 2,712 (40%)

Class I Indication for AVR*

Potential Class IIa Indication for AVR*

*Based on the 2014 American Heart Association (AHA) / American College of Cardiology (ACC) guidelines for the management of VHD

Li SX... Elmariah S. JACC, 2022;79:864-77.
Trends in AVR Utilization
Mass General Brigham experience 2000-2017

Class I Indication for AVR for High Gradient AS

HG-NEF (n=2,271)

HG-LEF (n=549)

Potential Class IIa Indication for AVR for Low Gradient AS

LG-NEF (n=2,712)

LG-LEF (n=618)

Li SX... Elmariah S. JACC, 2022;79:864-77.
Trends in AVR Utilization
Mass General Brigham experience 2000-2017

Class I Indication for AVR for High Gradient AS

- HG-NEF (n=2,271)
 - No AVR 688 (30%)
 - AVR 1,583 (70%)

- HG-LEF (n=549)
 - No AVR 256 (47%)
 - AVR 293 (53%)

Severe symptomatic AS

Potential Class IIa Indication for AVR for Low Gradient AS

- LG-NEF (n=2,712)
 - AVR 866 (32%)
 - No AVR 1,846 (67%)

- LG-LEF (n=618)
 - AVR 235 (38%)
 - No AVR, 383 (62%)

Treatment Rate <50%

Li SX... Elmariah S. JACC, 2022;79:864-77.
AVR Associates with Improved Survival Across Spectrum of SSAS

AVR associated with 58% lower adjusted hazard of mortality

AVR associated with 72% lower adjusted hazard of mortality

AVR associated with 27% lower adjusted hazard of mortality

AVR associated with 52% lower adjusted hazard of mortality

Li SX... Elmariah S. JACC, 2022;79:864-77.
Contributors to AVR Underutilization

Less likely to get AVR
- Low mean AVG
- Older age
- Women
- Inpatient TTE
- Low LVEF
- Low hematocrit

More likely to get AVR
- CAD
- Smoker

TABLE 3 OR of Baseline and Echocardiographic Characteristics Associated With Performance of AVR

<table>
<thead>
<tr>
<th></th>
<th>Univariate OR</th>
<th>95% CI</th>
<th>P Value</th>
<th>Multivariate OR</th>
<th>95% CI</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>High-gradient AS with Class I indication for AVR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age</td>
<td>0.972</td>
<td>0.965-0.979</td>
<td><0.001</td>
<td>0.978</td>
<td>0.971-0.986</td>
<td><0.001</td>
</tr>
<tr>
<td>Male</td>
<td>1.283</td>
<td>1.097-1.501</td>
<td>0.002</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>White</td>
<td>1.34</td>
<td>1.007-1.783</td>
<td>0.045</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>CAD</td>
<td>1.242</td>
<td>1.057-1.460</td>
<td>0.009</td>
<td>1.759</td>
<td>1.455-2.126</td>
<td><0.001</td>
</tr>
<tr>
<td>DM</td>
<td>1.04</td>
<td>0.840-1.287</td>
<td>0.72</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Smoker</td>
<td>1.816</td>
<td>1.538-2.145</td>
<td><0.001</td>
<td>1.457</td>
<td>1.209-1.756</td>
<td><0.001</td>
</tr>
<tr>
<td>Hct</td>
<td>1.069</td>
<td>1.053-1.085</td>
<td><0.001</td>
<td>1.053</td>
<td>1.035-1.071</td>
<td><0.001</td>
</tr>
<tr>
<td>eGFR</td>
<td>1.012</td>
<td>1.009-1.016</td>
<td><0.001</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>IP TTE</td>
<td>0.583</td>
<td>0.496-0.686</td>
<td><0.001</td>
<td>0.773</td>
<td>0.631-0.948</td>
<td>0.014</td>
</tr>
<tr>
<td>LVEF ≥0.5</td>
<td>2.01</td>
<td>1.662-2.431</td>
<td><0.001</td>
<td>1.713</td>
<td>1.369-2.143</td>
<td><0.001</td>
</tr>
</tbody>
</table>

Low-gradient AS with potential Class IIa indication for AVR in contemporary era (2014-2017)						
Age	0.975	0.966-0.984	<0.001	0.976	0.966-0.986	<0.001
Male	1.813	1.471-2.235	<0.001	1.683	1.336-2.119	<0.001
White	1.533	1.045-2.249	0.029	-	-	-
CAD	1.211	0.068-1.487	0.068	1.369	1.084-1.727	0.008
DM	1.052	0.838-1.321	0.662	-	-	-
Smoker	1.364	1.111-1.674	0.003	-	-	-
Hct	1.061	1.041-1.082	<0.001	1.041	1.019-1.063	<0.001
eGFR	1.010	1.005-1.014	<0.001	-	-	-
IP TTE	0.600	0.486-0.741	<0.001	0.687	0.539-0.875	0.002
LVEF ≥0.5	0.945	0.739-1.209	0.633	-	-	-

AS = aortic stenosis; AVR = aortic valve replacement; CAD = coronary artery disease; DM = diabetes mellitus; eGFR = estimated glomerular filtrate rate (mL/min/1.73 m²); IP TTE = inpatient transthoracic echocardiogram; LVEF = left ventricular ejection fraction; mAVG = mean aortic valve gradient.

Li SX… Elmariah S. JACC, 2022;79:864-77.
Variation in Physician Referral Patterns

< 1 in 3 referred to a HVT member or cardiac surgeon

% of Class I indicated patients that are treated

22%

Increased risk of death for patients managed by cardiologists in the bottom quartile versus the top even when controlling for comorbidities

Top 25% of cardiologists by AVR rate

Bottom 25% cardiologists by AVR rate

Cardiologists ranked by treatment rates of AVR patients

Li SX... Elmariah S. JACC, 2022;79:864-77.
Efforts are needed to:

- Encourage screening of patients at risk of AS (PE and TTE)
- Increase awareness of low-gradient AS
- Clarify echocardiogram reporting of AS
- Bolster transitions of care
- Facilitate referral of patients with AS to Heart Valve Teams
Today's Panel Discussion

PANELISTS

Wayne Batchelor, MD, MHS
Director of the Interventional Heart Program, Inova Health System

Ethan Korngold, MD
Division Chair, Interventional Cardiology and Structural Heart Providence Heart Institute

Melissa M. Levack, MD
Director of Thoracic Aortic Surgery, Vanderbilt University Medical Center

Angela Lowenstern, MD, MHS
Assistant Professor of Medicine Interventional Cardiology, Division of Cardiovascular Medicine, Vanderbilt University Medical Center

Catherine M. Otto, MD
Professor of Medicine, University of Washington School of Medicine

Amar D. Patel, MD
Co-Director Structural Heart & Valve Program, Wellstar Center for Cardiovascular Care Wellstar Health System

Elizabeth M. Perpetua, DNP, ACNP-BC
Founder, Empath Health Services LLC, University of Washington School of Nursing

Sreekanth Vemulapalli, MD
Medical Director, Cardiac Diagnostic United and Echocardiography Lab, Duke University Medical Center
DETECT AS Study: Electronic Physician Notification to Facilitate the Recognition and Management of Severe Aortic Stenosis:

Consecutive patients with severe AS (AVA <1cm²)
Inclusion Criteria: ≥ 18 years
Exclusion Criteria: mechanical or prosthetic aortic valve

Randomization by provider

470 patients
Control Arm: No intervention

470 patients
Intervention Arm: Physician Notification Letter via email reporting the diagnosis and providing guideline recommendations for further intervention and/or monitoring

Follow-up for 1 year following final patient enrollment.
Primary outcome: AVR utilization
Secondary outcomes: mortality, heart failure hospitalization, TTE utilization/surveillance, AS billing code diagnosis, and cardiology/Heart Valve Team referral.

Timeline
Study Onset: Patient accrual and randomization.
3 years: Outcome measurement.

ClinicalTrials.gov Identifier: NCT05230225
Today’s presentation was brought to you by:

American Heart Association®
Target: Aortic Stenosis™

For more information on Target: AS
visit: https://www.heart.org/en/professional/quality-improvement/target-aortic-stenosis