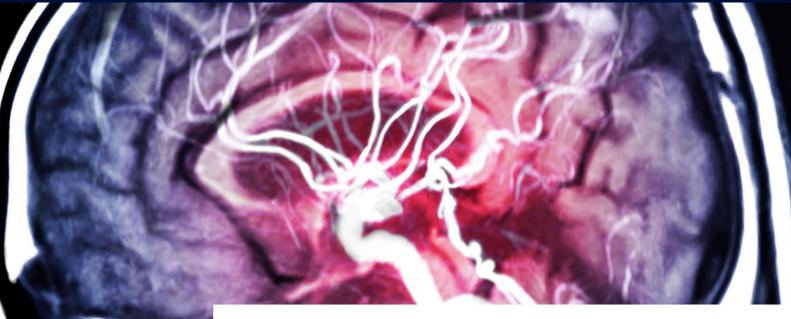
STROKE IN THE TIME OF COVID-19 SPECIAL CONSIDERATIONS

For technical issues, please contact Felecia.Bryan@heart.org

UNOVARTIS

The American Heart Association/American Stroke Association thanks Novartis for its support of the Quality Improvement Platform


HOST: DR MICHAEL FRANKEL

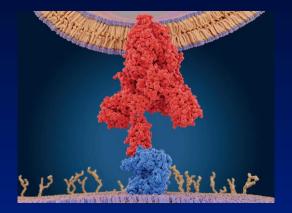
Since 1992, **Dr. Michael Frankel** has served as Chief of Neurology at Grady Memorial Hospital. He became the Director of the Marcus Stroke and Neuroscience Center at Grady when it opened in 2010. He is also a Professor of Neurology and Division Director of Vascular Neurology at Emory University School of Medicine.

Stroke in the Time of COVID-19 Special Considerations

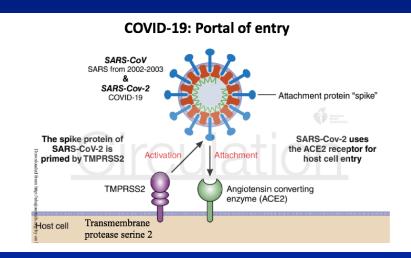
Host: Michael Frankel, MD Director, Marcus Stroke & Neuroscience Center at Grady Hospital Professor & Director of Vascular Neurology Emory University School of Medicine Atlanta, GA mfranke@emory.edu

Disclosures (Frankel)

- Grant support
 - Industry
 - -Nico Corporation: (ENRICH clinical trial)
 - □ NIH/CDC


COVID-19 Data 5/7/2020

Global Cases: 3,775,667
Global Deaths: 264,406
US Cases: 1,228,609
US Deaths: 73,431


https://coronavirus.jhu.edu/map.html

MARCUS STROKE & NEUROSCIENCE CENTER

Grady

Fang L et al. Lancet Resp Med April 2020.

Clerkin KJ et al. Circulation 2020.

Heart Attacks and Strokes Don't Stop During Pandemics. Call 911 right away if you have symptoms. Even while fighting the coronavirus, emergency systems stand ready to help.

heart.org

Lyden P, on behalf of the AHA/ASA Stroke Council Leadership. Temporary Emergency Guidance to US Stroke Centers During the COVID-19 Pandemic. April 2020. https://www-ahajournals-org.proxy.library.emory.edu/doi/pdf/10.1161/STROKEAHA.120.030023 Thomas J. Oxley, M.D. J. Mocco, M.D. Shahram Majidi, M.D. Christopher P. Kellner, M.D. Hazem Shoirah, M.D. I. Paul Singh, M.D. Reade A. De Leacy, M.D. Tomoyoshi Shigematsu, M.D. Travis R. Ladner, M.D. Kurt A. Yaeger, M.D. Maryna Skliut, M.D. Jesse Weinberger, M.D. Neha S. Dangayach, M.D. Joshua B. Bederson, M.D. Stanley Tuhrim, M.D. Johanna T. Fifi, M.D.

Mount Sinai Health System New York, NY thomas.oxley@mountsinai.org

The NEW ENGLAND JOURNAL of MEDICINE

CORRESPONDENCE

COVID-19 CASES

To rapidly communicate information on the global clinical effort against Covid-19, the Journal has initiated a series of case reports that offer important teaching points or novel findings. The case reports should be viewed as observations rather than as recommendations for evaluation or treatment. In the interest of timeliness, these reports are evaluated by in-house editors, with peer review reserved for key points as needed.

Large-Vessel Stroke as a Presenting Feature of Covid-19 in the Young

NEJM. April 2020

Presentation

Large Vessel Stroke as a Presenting Feature of COVID-19 in the Young

Stanley Tuhrim, MD

Dr. Tuhrim is the Director of the Division of Vascular Neurology and Vice-Chair for Clinical Affairs in the Department of Neurology. He is a Professor of Neurology and Geriatrics and Palliative Medicine in the Icahn School of Medicine at Mount Sinai.

Special Report

Mechanical Thrombectomy in the Era of the COVID-19 Pandemic: Emergency Preparedness for Neuroscience Teams A Guidance Statement From the Society of Vascular and Interventional Neurology

Thanh N. Nguyen[®], MD, FRCPc; Mohamad Abdalkader, MD; Tudor G. Jovin, MD;
Raul G. Nogueira, MD; Ashutosh P. Jadhav, MD; Diogo C. Haussen, MD; Ameer E. Hassan, DO;
Roberta Novakovic, MD; Sunil A. Sheth, MD; Santiago Ortega-Gutierrez, MD, MSc;
Peter D. Panagos, MD; Steve M. Cordina, MD; Italo Linfante, MD; Ossama Yassin Mansour, MD, PhD;
Amer M. Malik, MD, MBA; Sandra Narayanan, MD; Hesham E. Masoud, MD;
Sherry Hsiang-Yi Chou, MD; Rakesh Khatri, MD; Vallabh Janardhan, MD;
Dileep R. Yavagal, MD; Osama O. Zaidat, MD; David M. Greer, MD; David S. Liebeskind, MD

Stroke. April 2020

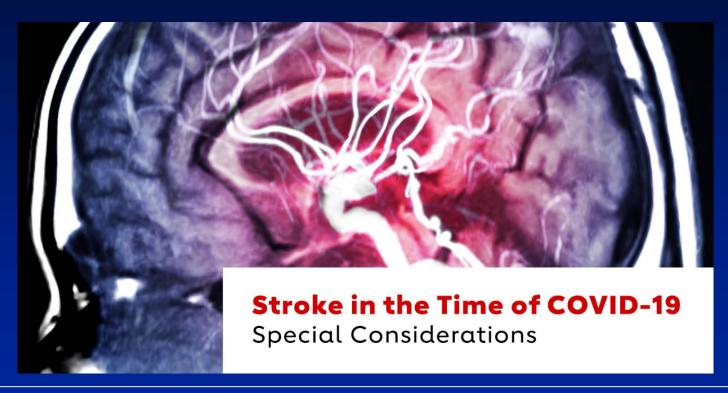
Presentation

Neuroendovascular Considerations in Stroke Care During the COVID-19 Pandemic

Dr. Nogueira completed his training at the Massachusetts General Hospital (MGH)/ Harvard Medical School (HMS). He is a Professor of Neurology at the Emory University School of Medicine and has been the Director of the Neuroendovascular Service at the Marcus Stroke & Neuroscience Center/ Grady Memorial Hospital since its inception ten years ago.

Katleen Wyatt Chester, PharmD, BCCCP, BCGP Presentation

Venous Thromboembolism Considerations in COVID-19 Patients


Dr. Wyatt Chester is the clinical pharmacist specialist for the neurocritical care unit at Grady Health System and director of the second, ASHP-accredited PGY-2 Neurology Pharmacy Residency Program in the country.

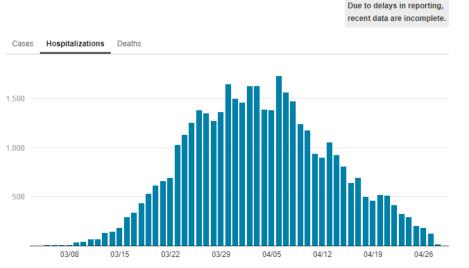
Dr. Morgan is a clinical pharmacist specialist in neurology for the Marcus Stroke and Neuroscience Center. Her role is a hybrid of acute care and ambulatory care.

Olivia "Libby" Morgan, PharmD, BCCCP, BCGP

Questions & Answers at the end of all the presentations Use the chat function to submit questions

- Large Vessel Stroke as a Presenting Feature of COVID-19 in the Young
- Neuroendovascular Considerations in Stroke Care During the COVID-19 Pandemic
- Venous Thromboembolism Considerations in Stroke Care During the COVID-19 Pandemic

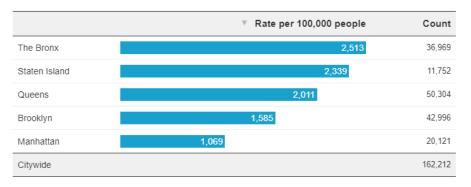
Stroke in the Time of Covid-19:


Large Vessel Stroke as a Presenting Feature of COVID-19 in the Young

Stanley Tuhrim, M.D.

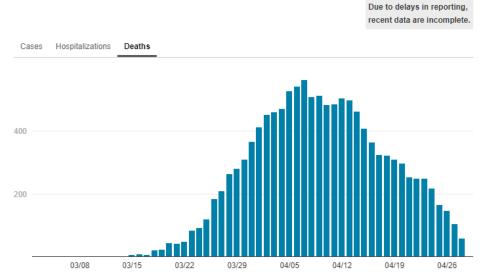
Daily Counts

This chart shows the number of positive cases by diagnosis date, hospitalizations by admission date and deaths by date of death from COVID-19 on a daily basis since March 3.


Hover over bars to see exact values.

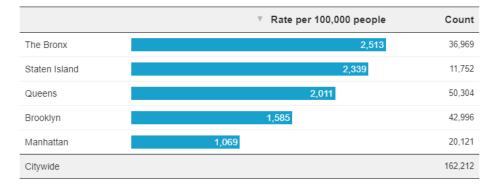
Get the data · Created with Datawrapper

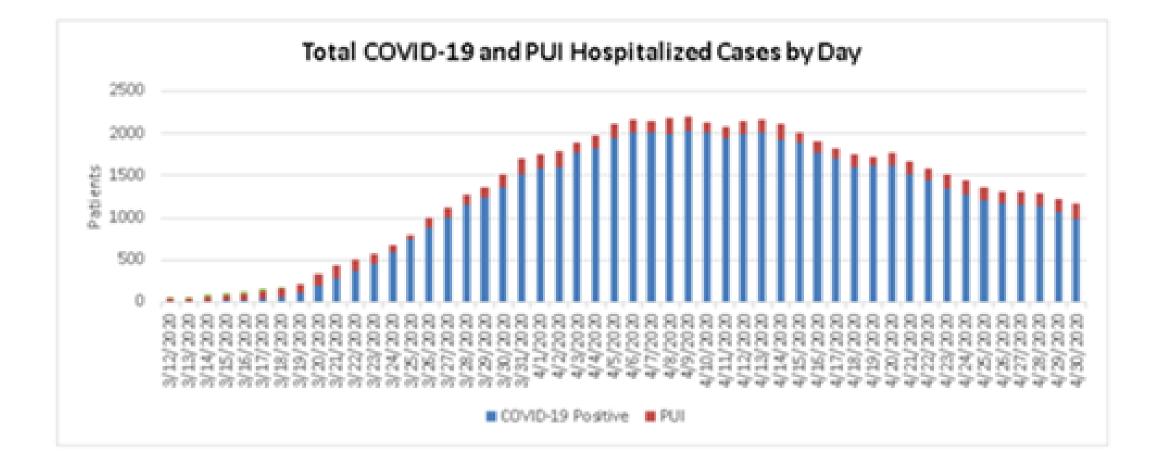
Rates by Borough


This chart shows the number of positive cases per 100,000 people in each borough. It indicates the spread of COVID-19 relative to each borough's population.

Daily Counts

This chart shows the number of positive cases by diagnosis date, hospitalizations by admission date and deaths by date of death from COVID-19 on a daily basis since March 3.


Hover over bars to see exact values.

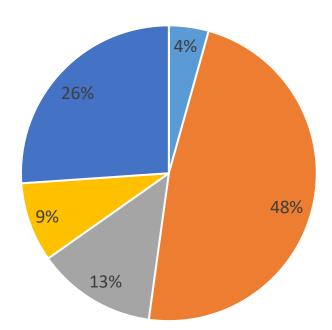

Get the data . Created with Datawrapper

Rates by Borough

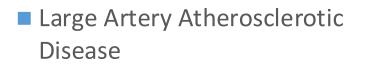
This chart shows the number of positive cases per 100,000 people in each borough. It indicates the spread of COVID-19 relative to each borough's population.

Get the data . Created with Datawrapper

2019 Mount Sinai Health System Stroke Mechanisms


Large Artery Atherosclerotic Disease Cardioembolism Small Vessel Disease Stroke of Other Determined Source

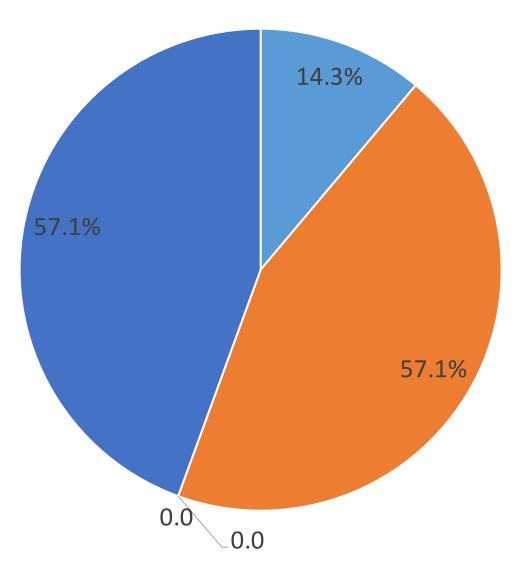
Cryptogenic


March 21-April 14 2020 Mount Sinai Hospital Stroke Mechanisms

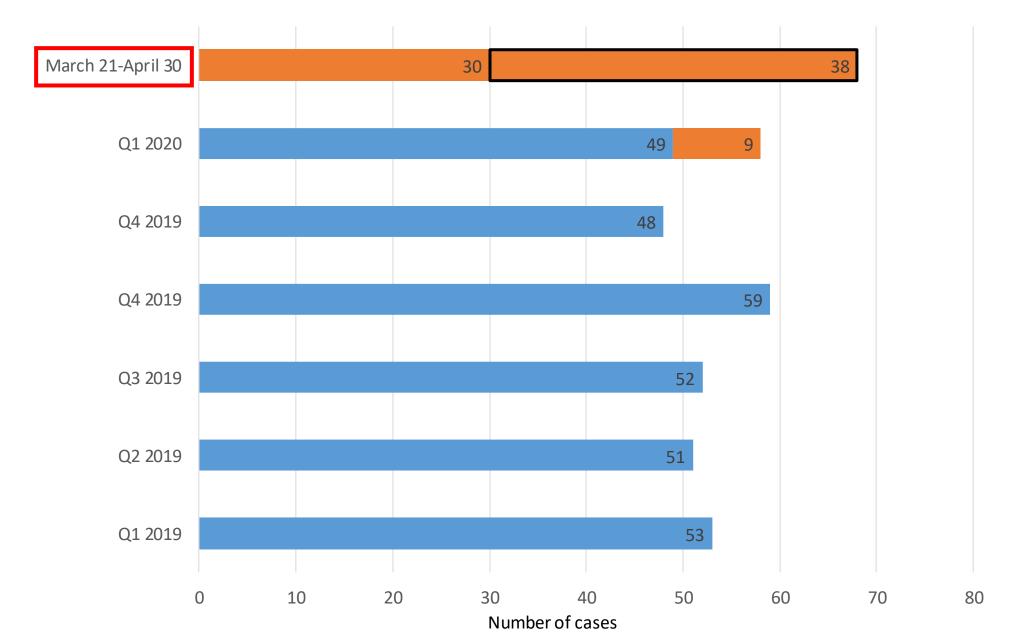
- Large Artery Atherosclerotic Disease
- Cardioembolism
- Small Vessel Disease
- Stroke of Other Determined Source

Cryptogenic

Mechanism of Large Vessel Occlusion Covid Cohort (March 21-April14)



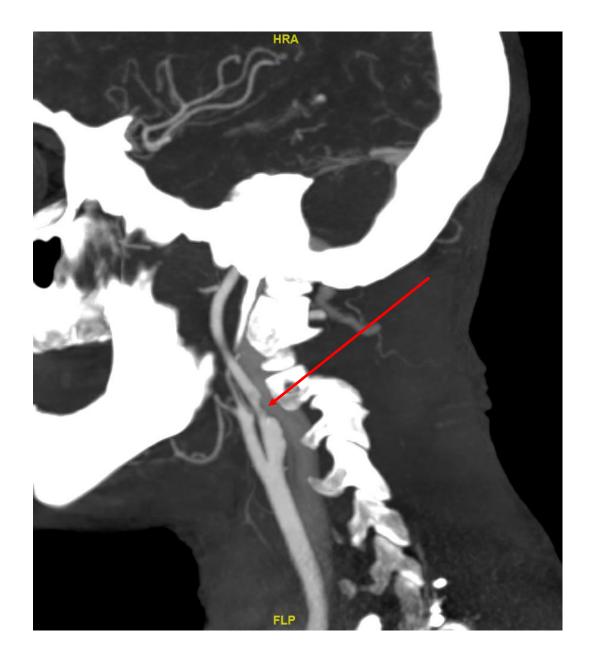
Cardioembolism


Small Vessel Disease

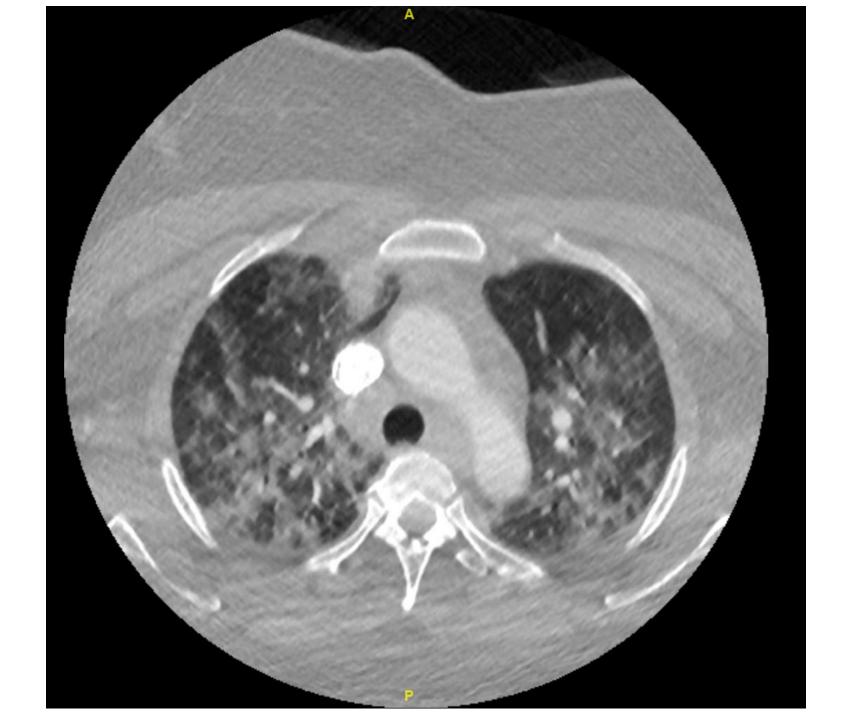
Stroke of Other Determined Source

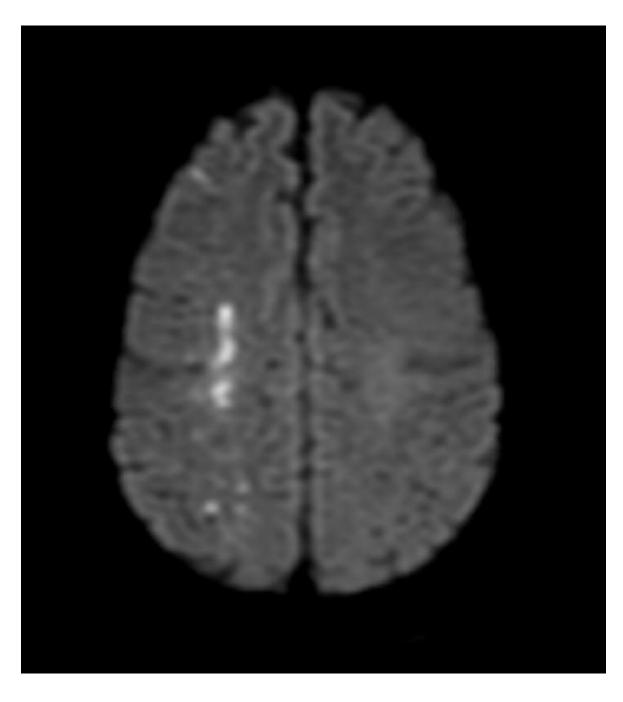
Cryptogenic

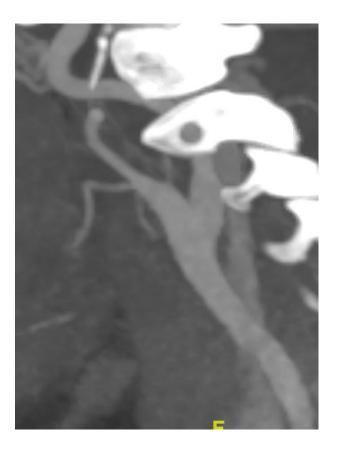
Mount Sinai Health System Endovascular Case Volumes


Clinical Characteristics of Five Young Patients Presenting with Large-Vessel Stroke.*

Variable	Patient 1	Patient 2	Patient 3	Patient 4	Patient 5
Age — yr	33	37	39	44	49
Sex	Female	Male	Male	Male	Male
Medical history and risk factors for stroke†	None	None	Hyperlipidemia, hypertension	Undiagnosed diabetes	Mild stroke, diabetes
Medications	None	None	None	None	Aspirin (81 mg), atorvastatin (80 mg)
NIHSS score‡					
On admission	19	13	16	23	13
At 24 hr	17	11	4	19	11
At last follow-up	13 (on day 14)	5 (on day 10)	NA; intubated and sedated, with multiorgan failure	19 (on day 12)	7 (on day 4)
Outcome status	Discharged to rehabilitation facility	Discharged home	Intensive care unit	Stroke unit	Discharged to rehabilitation facility
Time to presentation — hr	28	16	8	2	8
Signs and symptoms of stroke	Hemiplegia on left side, facial droop, gaze pref- erence, homonymous hemianopia, dysarthria, sensory deficit	Reduced level of conscious- ness, dysphasia, hemiple- gia on right side, dysar- thria, sensory deficit	Reduced level of consciousness, gaze preference to the right, left homonymous hemiano- pia, hemiplegia on left side, ataxia	Reduced level of consciousness, global dysphasia, hemiplegia on right side, gaze preference	Reduced level of conscious- ness, hemiplegia on left side, dysarthria, facial weakness
Vascular territory	Right internal carotid artery	Left middle cerebral artery	Right posterior cerebral artery	Left middle cerebral artery	Right middle cerebral arter
Imaging for diagnosis	CT, CTA, CTP, MRI	CT, CTA, MRI	CT, CTA, CTP, MRI	CT, CTA, MRI	CT, CTA, CTP
Treatment for stroke	Apixaban (5 mg twice daily)	Clot retrieval, apixaban (5 mg twice daily)	Clot retrieval, aspirin (81 mg daily)	Intravenous t-PA, clot retrieval, hemicraniectomy, aspirin (81 mg daily)	Clot retrieval, stent, aspirin (325 mg daily), clopido- grel (75 mg daily)
Covid-19 symptoms	Cough, headache, chills	No symptoms; recently exposed to family mem- ber with PCR-positive Covid-19	None	Lethargy	Fever, cough, lethargy
White-cell count — per mm ³	7800	9900	5500	9000	4900
Platelet count — per mm ³	427,000	299,000	135,000	372,000	255,000
Prothrombin time — sec	13.3	13.4	14.4	12.8	15.2
Activated partial-throm- boplastin time — sec	25.0	42.7	27.7	26.9	37.0
Fibrinogen — mg/dl	501	370	739	443	531
D-dimer — ng/ml	460	52	2230	13,800	1750
Ferritin — ng/ml	7	136	1564	987	596

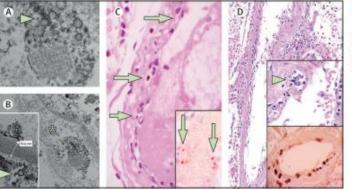

* Reference ranges are as follows: platelet count, 150,000 to 450,000 per cubic millimeter; prothrombin time, 12.3 to 14.9 seconds; activated partial-thromboplastin time, 25.4 to 34.9 seconds; fibrinogen, 175 to 450 mg per deciliter; o-dimer, 0 to 500 ng per milliliter; and ferritin, 30 to 400 ng per milliliter. CT denotes computed tomography, CTA CT angiography, CTP CT perfusion, MRI magnetic resonance imaging, NA not applicable, PCR polymerase chain reaction, and t-PA tissue plasminogen activator.
† The patients were screened for smoking, hypertension, hyperlipidemia, diabetes, atrial fibrillation, congestive heart failure, illicit drug use, and neck trauma.


1 the patients were screened for smoking, hypertension, hyperilpidemia, diabetes, atrial honilation, congestive heart failure, lilicit drug use, and neck trauma. \$ Scores on the National Institutes of Health Stroke Scale (NIHSS) range from 0 to 42, with higher numbers indicating more severe stroke.



Hypothesized Mechanisms of LVO in COVID-19

- Coagulopathy now well-recognized in COVID-19 disease state
- Extent seems to correlate with severity of respiratory disease
- Virally mediated disruption of endothelium (endotheliitus) leading to thrombus formation may also play a role in LVO
- SARS-CoV-2 virus may infect host cells via ACE2 receptors expressed in multiple organs and on vascular endothelial cells
- Viral particles and accumulations of inflammatory cells have been identified in multiple organs


Correspondence

Q.

Endothelial cell infection and endotheliitis in COVID-19

Cardiovascular complications are rapidly emerging as a key threat in coronavirus disease 2019 (COVID-19) in addition to respiratory disease. The mechanisms underlying the disproportionate effect of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection on patients with cardiovascular comorbidities, however, remain incompletely understood.¹²

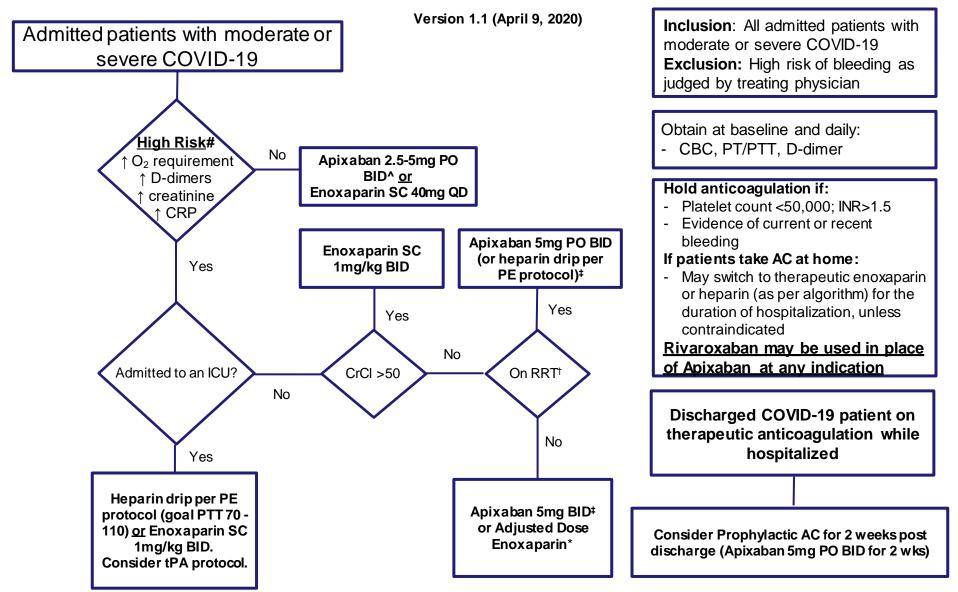

SARS-CoV-2 infects the host using the angiotensin converting enzyme 2 (ACE2) receptor, which is expressed in several organs, including the lung, heart, kidney, and intestine. ACE2 receptors are also expressed by endothelial cells.³ Whether vascular derangements in COVID-19 are due to endothelial cell involvement by the virus is currently

Figure: Pathology of endothelial cell dysfunction in COVID-19

(A, B) Electron microscopy of kidney tissue shows viral inclusion bodies in a peritubular space and viral particles in endothelial cells of the glomerular capillary loops. Aggregates of viral particles (arrow) appear with dense circular surface and lucid centre. The asterisk in panel B marks peritubular space consistent with capillary containing viral particles. The inset in panel B shows the glomerular basement membrane with endothelial cell and a viral particle (arrow, about 150 nm in diameter). (C) Small bowel resection specimen of patient 3, stained with haematoxylin and eosin. Arrows point to dominant monoruclear cell infiltrates within the intima along the lumen of many vessels. The inset of panel C shows an immunohistochemical staining of caspase 3 in small bowel specimens from serial section of tissue described in panel D. Staining patterns were consistent with apoptosis of endothelial cells and mononuclear cells observed in the baematoxylin-eosin-stained sections, indicating that apoptosis is induced in a substantial proportion of these cells. (D) Post-mortem lung specimen stained with haematoxylin and eosin showed thickened lung septa, including a large arterial vessel with mononuclear and neutrophilic infiltration (arrow in upper inset). The lower inset shows an immunohistochemical staining of caspase 3 on the same lung specimen; these staining patterns were consistent with apoptosis of endothelial cells and mononuclear cells observed in the haematoxylin-eosinstained sections. COVID-19-coronavirus disease 2019. Published Online April 17, 2020 https://doi.org/10.1016/ S0140-6736(20)30937-5

Mount Sinai COVID-19 Anticoagulation Algorithm

#<u>High Risk</u>: No precise metrics exist. Consider exam (eg O_2 sat<90%, RR >24), $\uparrow O_2$ requirement (eg, ≥4L NC), labs (eg, \uparrow d-dimers, C-reactive protein) ^Efficacy and dose not established; prophylactic or treatment doses acceptable

†RRT – Renal Replacement Therapy

 \ddagger If ≥80 years of age or weight ≤60 kg, reduce apixaban to 2.5 mg BID

* If CrCl <30: enoxaparin 0.5mg/kg BID with anti-Xa level after 3rd dose

Mount Sinai COVID-19 Anticoagulation Algorithm

Definition of high risk for progression to ICU

- There is insufficient evidence to precisely define "high-risk" or provide specific cut-off values for individual factors
- Clinicians should consider a combination of exam findings (e.g, labored breathing, RR >24, decreased O₂ sat<90%), increased O₂ requirement (eg, ≥4L NC), and lab biomarkers (eg, elevated CRP, elevated creatinine, rising d-dimer >1.0).

Rationale for early anticoagulation

- Pathophysiology of COVID-19 associated respiratory disease is consistent with pulmonary vascular thromboemboli with increased dead space ventilation
- Autopsy studies have demonstrated venous thromboembolism in deceased coronavirus patients¹
- Early anticoagulation is necessary to prevent propagation of microthrombi at disease presentation
- Anticoagulation may be associated with decreased mortality²

Rationale for choice of anticoagulant

- Heparins bind tightly to COVID-19 spike proteins^{3,4}
- Heparins also downregulate IL-6 and directly dampen immune activation⁵
- DOACs do not appear to have these anti-inflammatory properties
- Rivaroxaban can be used in place of Apixaban in this algorithm

References

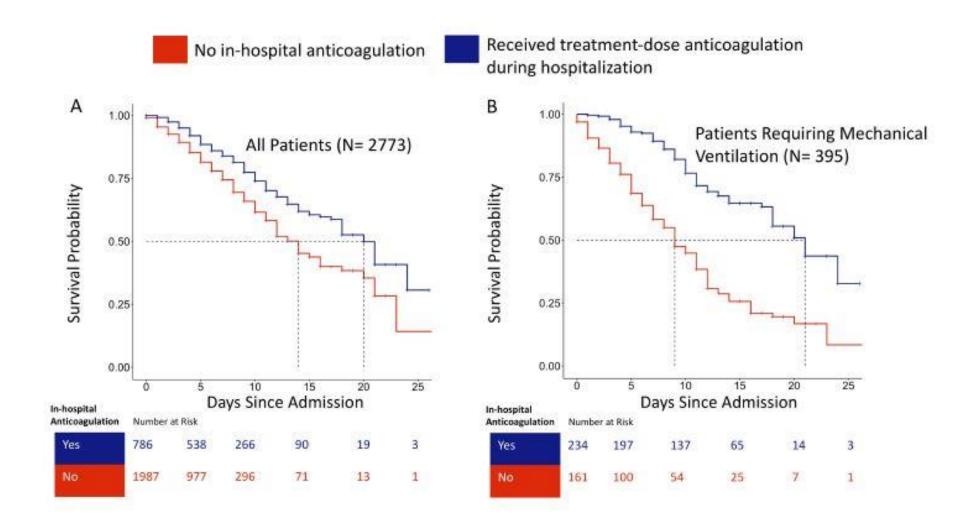
- 1. Xiang-Hua et al. Am J Respir Crit Care Med, 182 (3), 436-7. PMID: 20675682
- 2. Tang et al. J Thromb Haemost 2020 Mar 27. PMID: 32220112
- 3. Belouzard et al. Proc Natl Acad Sci, 2009 106 (14), 5871-6. PMID: 19321428
- 4. de Haan et al. J Virol. 2005 Nov; 79(22): 14451-14456. PMID: 16254381
- 5. Mummery et al. J Immunol, 2000. 165 (10), 5671-9. PMID: 1106792

Journal Pre-proof

Association of Treatment Dose Anticoagulation with In-Hospital Survival Among Hospitalized Patients with COVID-19

Ishan Paranjpe, BS, Valentin Fuster, MD, PhD, Anuradha Lala, MD, Adam Russak, MD, Benjamin S. Glicksberg, PhD, Matthew A. Levin, MD, Alexander W. Charney, MD, PhD, Jagat Narula, MD, PhD, Zahi A. Fayad, PhD, Emilia Bagiella, PhD, Shan Zhao, MD, PhD, Girish N. Nadkarni, MD, MPH

- PII: S0735-1097(20)35218-9
- DOI: https://doi.org/10.1016/j.jacc.2020.05.001
- Reference: JAC 27327


To appear in: Journal of the American College of Cardiology

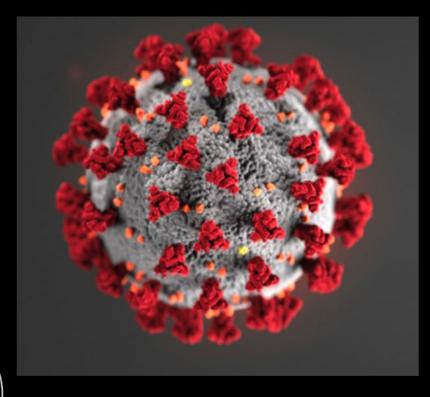
Paranjpe I, Fuster V, Lala A, Russak A, Glicksberg BS, Levin MA, Charney AW, Narula J, Fayad ZA, Bagiella E, Zhao S, Nadkarni GN, Association of Treatment Dose Anticoagulation with In-Hospital Survival Among Hospitalized Patients with COVID-19, *Journal of the American College of Cardiology* (2020), doi: https://doi.org/10.1016/j.jacc.2020.05.001.

Association of Treatment Dose Anticoagulation with In-Hospital Survival Among Hospitalized Patients with COVID-19

- Between March 14 and April 11, 2020, 2773 patients with laboratory-confirmed COVID-19 were admitted to the MSHS
- 786 received systemic anticoagulation during their hospital course
- Median time from admission to anticoagulation was 2 days
- Serious bleeding events occurred in 3% of AC and 1.9% non-AC but 1/3 of AC group's bleeds occurred before anticoagulation
- AC group was more likely to require mech ventilation (30% vs 8%)
- In-hospital mortality for the 2 groups was similar, 22.5% in AC, 22.8 % non-AC, but median survival was increased 21 vs 14 days
- Multivariate proportional hazard model longer duration of AC was associated with a reduced risk of mortality (HR .86/day, p<.001)

Paranjpe I, Fuster V, Lala A, Russak A, Glicksberg BS, Levin MA, Charney AW, Narula J, Fayad ZA, Bagiella E, Zhao S, Nadkarni GN, Association of Treatment Dose Anticoagulation with In-Hospital Survival Among Hospitalized Patients with COVID-19, Journal of the American College of Cardiology (2020), doi: https://doi.org/10.1016/j.jacc.2020.05.001.

Large Vessel Stroke in the COVID ERA Summary


- Stroke involving LVO seems to occur in patients with mild COVID-19 symptoms
- Stroke mechanism is not yet known but may be independent of hypercoagulable markers, or relate to a combination of a hypercoagulable state and direct endothelial damage (endotheliitis)
- Anticoagulation of hospitalized patients may improve outcome
- Other interventions, including those targeting the endothelium (ACEI?, statins?), may prove helpful

Neuroendovascular Considerations In Stroke Care During the COVID-19 Pandemic

Raul G Nogueira, MD

Professor in Neurology, Neurosurgery, and Radiology Emory University

Director, Neuroendovascular Service Grady Memorial Hospital Atlanta, GA

Disclosures:

Stryker's Neurovascular Division

- DAWN Trial PI (unpaid)
- Trevo Registry Steering Committee
- Trevo-2 Trial PI
- Consultant

Medtronic

- SWIFT & SWIFT-PRIME Trial Steering Committee (unpaid)
- STAR Trial Core Lab

Penumbra (unpaid)

3-D Separator Trial Executive Committee

Neuravi /Cerenovus

- ARISE-II Trial Steering Committee (unpaid)
- ENDOLOW Trial and EXCELLENT Registry PI

Phenox, Anaconda, Corindus Robotics, Biogen, Genentech, Prolong Pharmaceuticals

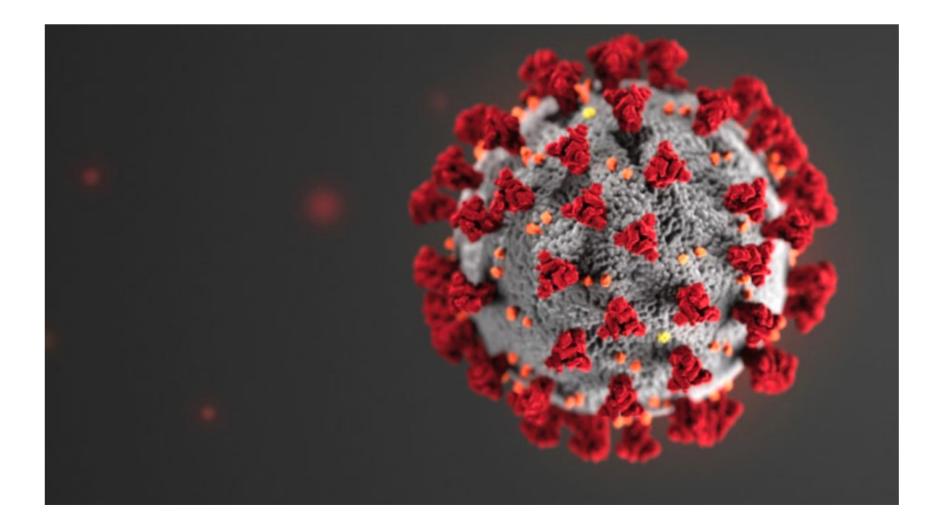
Allm Inc - JOIN (unpaid)

- Free Consultant and Beta-Site
- FAST-ED App (Freeware)
- RESILIENT Trial Collaboration

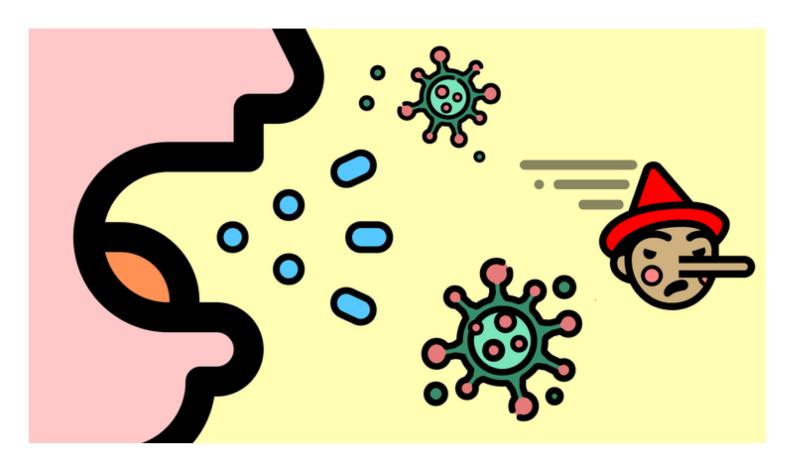
IschemaView

- CRISP, SWIFT-PRIME, & DAWN Trials (unpaid)
- Speaker (paid)
- RESILIENT Trial Collaboration

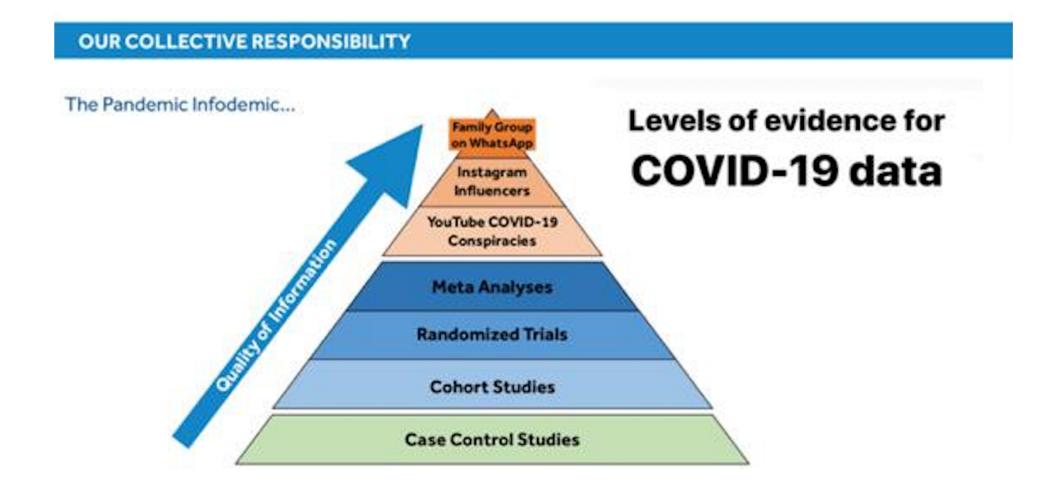
Brainomix (unpaid)


- Research Software Usage
- RESILIENT Trial Collaboration

Viz-Al (Stock Options)


Physician Advisory Board

Before We Start....

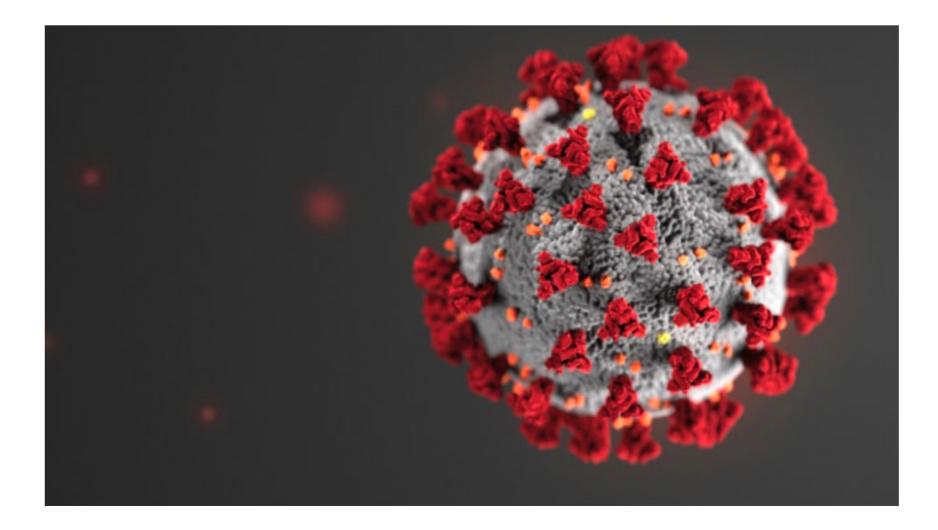


INFODEMIC: A Strong Ally to COVID-19

Opinions are not FACTS!

INFODEMIC: A Strong Ally to COVID-19

INFODEMIC: A Strong Ally to COVID-19

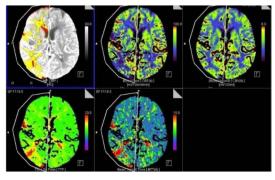

The NEW ENGLAND JOURNAL of MEDICINE

Covid-19 — A Reminder to Reason

Ivry Zagury-Orly, B.Sc., and Richard M. Schwartzstein, M.D.

Thus far in the Covid-19 pandemic, we've observed that therapeutic management has often been initiated and altered on the basis of individual case reports and physician opinion, rather than of randomized trials. In these uncertain times, physicians fall prey to cognitive error and unconsciously rely on limited experiences, whether their own or others', instead of scientific inquiry. We believe that physicians should be acting in concert with clinical equipoise. We should be skeptical of any purported therapeutic strategy until enough statistical evidence is gathered that would convince any "open-minded clinician informed of the results" that one treatment is superior to another

COVID-19: Neurological Manifestations and Stroke



INVESTIGATIONS

Research shows COVID-19 is causing strokes in patients, including a Texas correctional officer

vessels

by Henry Killworth, University College London

CT brain images highlighting acuate ischaemic stroke. Credit: Jacob F ...

Clinical observations of COVID-19 patients, who went on to have a stroke, suggest coronavirus may cause clots within blood vessels (arteries) in the brain, finds a team of neurologists from UCL and UCLH (the National Hospital for Neurology and Neurosurgery), London

Earning What You're Worth?

Outcomes

CME RESOURCE

Sclerosis

Related Articles

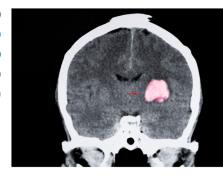
Rethinking Treatment in Rheumatoid Arthritis: Novel Approaches for Better

Connecting Emerging Science to Patient

Care in the Management of Multiple

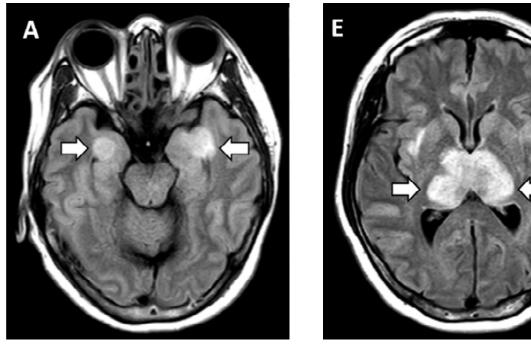
Q

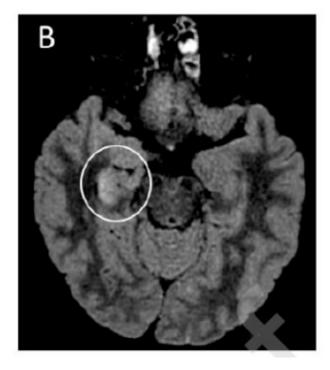
Infectious Disease > COVID-19


Ð

8

U.K. Report Backs Stroke as COVID-19 Complication


- More questions raised about anticoagulation timing, dose


by Judy George, Senior Staff Writer, MedPage Today May 4, 2020

Acute ischemic strokes were seen in six British COVID-19 patients, including two who had breakthrough strokes despite therapeutic anticoagulation, researchers reported.

Encephalitis in COVID 19

58 year old woman (airline worker) with 3-day history of cough, fever, and altered mental status. Nasal swab PCR positive for SARS-CoV-2 Diagnosed with acute hemorrhagic necrotizing encephalopathy *Poyiadji N et al. Radiology 2020.* 26 year old with seizures; nasal swab negative; CSF positive for SARS-CoV-2 Diagnosed with meningitis/encephalitis

Moriguchi T et al. Int J Infect Dis. 2020.

CORRESPONDENCE

Guillain-Barré Syndrome Associated with SARS-CoV-2

Table 1.	Characteristics of Five Pa	tients with Guillain–Barré Syndron	ne after the Onset of Covid-19.*			
Patient No.	Onset of Neurologic Syndrome	Neurologic Signs and Symptoms	CSF Findings†	Antiganglioside Antibodies <u>;</u>	MRI Results	Treatment and Outcomes at Week 4
1	7 Days after fever, cough, and ageusia	Flaccid areflexic tetraplegia evolving to facial weakness, upper-limb paresthesia (36 hr), and respiratory failure (day 6)	Day 2 (first lumbar puncture): normal protein level; no cells; negative PCR assay for SARS- CoV-2 Day 10 (second lumbar puncture): protein level, 101 mg/dl; white-cell count, 4 per mm ³ ; negative PCR assay for SARS- CoV-2	Negative	Head: normal Spine: enhancement of caudal nerve roots	Received 2 cycles of IVIG; had poor outcomes, including persistence of severe upper-limb weak- ness, dysphagia, and lower-limb paraplegia
2	10 Days after fever and pharyngitis	Facial diplegia and generalized areflexia evolving to lower- limb paresthesia with ataxia (day 2)	Day 3: protein level, 123 mg/dl; no cells; negative PCR assay for SARS-CoV-2	Not tested	Head: enhancement of facial nerve bilaterally Spine: normal	Received IVIG; had im- provements, including decrease in ataxia and mild decrease in facial weakness
3	10 Days after fever and cough	Flaccid tetraparesis and facial weakness evolving to are- flexia (day 2) and respira- tory failure (day 5)	Day 3: protein level, 193 mg/dl; no cells; negative PCR assay for SARS-CoV-2	Negative	Head: normal Spine: enhancement of caudal nerve roots	Received 2 cycles of IVIG; had poor outcomes, including ICU admission owing to neuromuscular respiratory failure and flaccid tetraplegia
4	5 Days after cough and hyposmia	Flaccid areflexic tetraparesis and ataxia (day 4)	Day 5: normal protein level; no cells; negative PCR assay for SARS-CoV-2	Not tested	Head: normal Spine: normal	Received IVIG; had mild im- provement but unable to stand 1 mo after onset
5	7 Days after cough, ageusia, and anos- mia	Facial weakness, flaccid are- flexic paraplegia (days 2–3), and respiratory failure (day 4)	Day 3: protein level, 40 mg/dl; white-cell count, 3 per mm ³ ; CSF:serum albumin ratio, 1.2%; negative PCR assay for SARS-CoV-2	Negative	Head: not performed Spine: normal	Received IVIG and plasma exchange; had bacterial pneumonia during IVIG treatment, which delayed plasma exchange

* Covid-19 denotes coronavirus disease 2019, CSF cerebrospinal fluid, ICU intensive care unit, IVIG intravenous immune globulin, MRI magnetic resonance imaging, PCR polymerase chain reaction, and SARS-CoV-2 severe acute respiratory syndrome coronavirus 2.

† On CSF analysis, all the patients had a normal glucose level and IgG index and a polyclonal pattern on electrophoresis. The normal range for the protein level is 15 to 45 mg per deciliter.

‡ An enzyme-linked immunosorbent assay was used to test for antibodies to GM1, GQ1b, and GD1b.

Research

JAMA Neurology | Original Investigation

Neurologic Manifestations of Hospitalized Patients With Coronavirus Disease 2019 in Wuhan, China

Ling Mao; Huijuan Jin; Mengdie Wang; Yu Hu; Shengcai Chen; Quanwei He; Jiang Chang; Candong Hong; Yifan Zhou; David Wang; Xiaoping Miao; Yanan Li, MD, PhD; Bo Hu, MD, PhD

- Patients severe infection (n=88/214; 41.1%) (as per the international guidelines for community-acquired pneumonia were older and more often had other underlying disorders but had less typical symptoms such as fever (40 [45.5%] vs 92 [73%], P<0.001) and dry cough (30 [34.1%] vs 77 [61.1%], P<0.001).</p>
- Neurological symptoms were significantly more common in severe cases as compared with nonsevere cases (40 [45.5%] vs. 38 [30.2%], P<0.05).
- Neurological symptoms included stroke in 5.7% (n=5; 4 ischemic; 1 hemorrhagic), impaired consciousness in14.8% and muscle injury in 19.3% of the 88 patients with severe disease.
- Patients with CNS symptoms had lower lymphocyte and platelet counts and higher blood urea nitrogen levels.
- There is a neuroinvasive potential of SARS-CoV2. Notably, infection of SARS-CoV has been reported in the brains from both patients and experimental animals, where the brainstem was heavily infected (J <u>Med Virol.</u> 2020 Feb 27. doi: 10.1002/jmv.25728. [Epub ahead of print]

Clinical neurological findings in COVID-19

 Chinese autopsy reports of endovasculitis, endothelial damage, cerebral edema, hyperemia, and neurodegeneration in SARS-CoV-2

Diagnosis and Treatment Protocol for Novel Coronavirus Pneumonia (Version 7). March 3, 2020.

 Other neurological complications of critical illness, such as critical illness myopathy, increased thrombotic risk, and cerebral hypoperfusion, may result from the extended intensive care stays.

The NEW ENGLAND JOURNAL of MEDICINE

CORRESPONDENCE

COVID-19 CASES

To rapidly communicate information on the global clinical effort against Covid-19, the Journal has initiated a series of case reports that offer important teaching points or novel findings. The case reports should be viewed as observations rather than as recommendations for evaluation or treatment. In the interest of timeliness, these reports are evaluated by in-house editors, with peer review reserved for key points as needed.

Large-Vessel Stroke as a Presenting Feature of Covid-19 in the Young

Variable	Patient 1	Patient 2	Patient 3	Patient 4	Patient 5
Age — yr	33	37	39	44	49
Sex	Female	Male	Male	Male	Male
Medical history and risk factors for stroke†	None	None	Hyperlipidemia, hypertension	Undiagnosed diabetes	Mild stroke, diabetes
Medications	None	None	None	None	Aspirin (81 mg), atorvastatin (80 mg)
NIHSS score‡					
On admission	19	13	16	23	13
At 24 hr	17	11	4	19	11
At last follow-up	13 (on day 14)	5 (on day 10)	NA; intubated and sedated, with multiorgan failure	19 (on day 12)	7 (on day 4)
Outcome status	Discharged to rehabilitation facility	Discharged home	Intensive care unit	Stroke unit	Discharged to rehabilitation facility
Time to presentation — hr	28	16	8	2	8
Signs and symptoms of stroke	Hemiplegia on left side, facial droop, gaze pref- erence, homonymous hemianopia, dysarthria, sensory deficit	Reduced level of conscious- ness, dysphasia, hemiple- gia on right side, dysar- thria, sensory deficit	Reduced level of consciousness, gaze preference to the right, left homonymous hemiano- pia, hemiplegia on left side, ataxia	Reduced level of consciousness, global dysphasia, hemiplegia on right side, gaze preference	Reduced level of conscious ness, hemiplegia on lef side, dysarthria, facial weakness
Vascular territory	Right internal carotid artery	Left middle cerebral artery	Right posterior cerebral artery	Left middle cerebral artery	Right middle cerebral arte
Imaging for diagnosis	CT, CTA, CTP, MRI	CT, CTA, MRI	CT, CTA, CTP, MRI	CT, CTA, MRI	CT, CTA, CTP
Treatment for stroke	Apixaban (5 mg twice daily)	Clot retrieval, apixaban (5 mg twice daily)	Clot retrieval, aspirin (81 mg daily)	Intravenous t-PA, clot retrieval, hemicraniectomy, aspirin (81 mg daily)	Clot retrieval, stent, aspirin (325 mg daily), clopido grel (75 mg daily)
Covid-19 symptoms	Cough, headache, chills	No symptoms; recently exposed to family mem- ber with PCR-positive Covid-19	None	Lethargy	Fever, cough, lethargy
White-cell count — per mm ³	7800	9900	5500	9000	4900
Platelet count — per mm ³	427,000	299,000	135,000	372,000	255,000
Prothrombin time — sec	13.3	13.4	14.4	12.8	15.2
Activated partial-throm- boplastin time — sec	25.0	42.7	27.7	26.9	37.0
Fibrinogen — mg/dl	501	370	739	443	531
D-dimer — ng/ml	460	52	2230	13,800	1750
Ferritin — ng/ml	7	136	1564	987	596

* Reference ranges are as follows: platelet count, 150,000 to 450,000 per cubic millimeter; prothrombin time, 12.3 to 14.9 seconds; activated partial-thromboplastin time, 25.4 to 34.9 seconds; fibrinogen, 175 to 450 mg per deciliter; p-dimer, 0 to 500 ng per milliliter; and ferritin, 30 to 400 ng per milliliter. CT denotes computed tomography, CTA CT angiography, CTP CT perfusion, MRI magnetic resonance imaging, NA not applicable, PCR polymerase chain reaction, and t-PA tissue plasminogen activator.

† The patients were screened for smoking, hypertension, hyperlipidemia, diabetes, atrial fibrillation, congestive heart failure, illicit drug use, and neck trauma. ‡ Scores on the National Institutes of Health Stroke Scale (NIHSS) range from 0 to 42, with higher numbers indicating more severe stroke.

Stroke in COVID-19

	Туре	Subtype	Age, y	Sex	Smoking	Drinking	Blood	Fasting Blood-	Type of COVID-19	Onset Time of	Onset Time	Treatment of	Outcom
	of	of AIS			History	History	pressure	glucose	Patients (Severe/Non-	SARS-CoV-2	of CVD	CVD	e Event
	CVD						(mm Hg)	(mmol/L)	Severe)	Infection			
1	AIS	Small vessel	70	М	No	No	110/70	5-44	Severe	01/26/20	02/23/20	Antiplatelet	Survival
2	AIS	Large vessel stenosis	75	F	No	No	110/67	6 03	Severe	01/24/20	02/15/20	Antiplatelet	Surviva1
3	AIS	Cardioembolic	89	F	No	No	97/64	6.77	Non-severe	02/19/20	02/19/20	Anticoagulant	Survival
4	AIS	Large vessel stenosis	91	F	No	No	192/97	6.7	Severe	02/01/20	02/10/20	Anticoagulant	Survival
5	AIS	Large vessel stenosis	72	F	No	No	155/89	7.93	Severe	02/01/20	02/12/20	Anticoagulant	Survival
6	AIS	Cardioembolic	71	М	Yes	No	142/67	16.25	Severe	01/31/20	02/07/20	Anticoagulant	Death
7	AIS	Cardioembolic	86	М	Yes	No	110/72	13-81	Severe	01/24/20	02/11/20	Antiplatelet	Death
8	AIS	Large vessel stenosis	82	F	No	No	140/83	24-2	Severe	02/02/20	02/16/20	Antiplatelet	Death
9	AIS	Small vessel	78	Μ	Yes	No	156/82	11.0	Severe	01/17/20	01/17/20	Antiplatelet	Death
10	AIS	Large vessel stenosis	57	М	No	No	127/83	13.24	Non-severe	02/06/20	02/07/20	Antiplatelet	Survival
11	AIS	Small vessel	66	F	No	No	98/62	8-67	Severe	02/11/20	02/17/20	Anticoagulant	Survival
12	CVS T		32	М	Yes	Yes	130/80	8-23	Severe	02/09/20	02/23/20	Anticoagulant	Survival
13	СН		62	М	Yes	Yes	150/80	5.81	Severe	01/23/20	02/01/20		Death

Table 1. Baseline characteristics of COVID-19 patients with new onset of CVD during infection

* The patients of COVID-19 were confirmed by SARS-CoV-2 RT-PCR positive in throat swab and viral-like pneumonia in chest CT.

Abbreviations: COVID-19, Coronavirus disease 2019; CVD, Cerebrovascular disease; AIS, Acute ischemia stroke; CH, Cerebral hemorrhage; CVST, Cerebral Venous Sinus Thrombosis; F, Female; M, Male

Li Y, et.al. Lancet. Mar 13 2020.

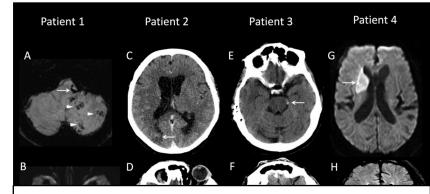
Journal of Neurology, Neurosurgery & Psychiatry

Characteristics of ischaemic stroke associated with COVID-19 a

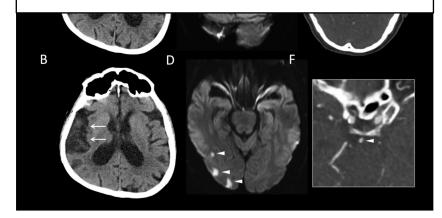
Rahma Beyrouti¹, Matthew E Adams², Laura Benjamin^{3, 4}, Hannah Cohen⁵, Simon F Farmer⁶, Yee Yen Goh⁶, Fiona Humphries¹, Hans Rolf Jäger^{2, 7}, Nicholas A Losseff^{1, 8}, Richard J Perry^{1, 4}, Sachit Shah², Robert J Simister^{1, 4}, David Turner¹, Arvind Chandratheva^{1, 4}, David J Werring^{1, 4}

Six consecutive AIS pts b/w 04/6-16[/]20 at the Queen Square, London, UK

COVID-19 confirmed by RT-PCR; Age 53-85 years; 5/6 males


Time COVID Sx to Stroke Sx: 8-24 days but preceded by 2 days in 1 case

All six pts had LVO with D-dimer levels ≥1000 (range, 1,080->80,000) All six pts had elevated ferritin and LDH levels Lupus anticoagulant positive in 5/6 pts but Anticardiolipin and Anti-β2glycoprotein-1 negative in 5/6


Three pts had multi-territory infarcts

Two had concurrent venous thrombosis

In two ischemic strokes occurred despite therapeutic anticoagulation

Our data cannot confirm a causal relationship between SARS-CoV-2 and ischaemic stroke, since competing vascular risk factors and mechanisms were present in most patients; four of six had hypertension, and two had AF.

Venous and arterial thromboembolic complications in COVID-19 patients admitted to an academic hospital in Milan, Italy

Corrado Lodigiani^{a,b,*}, Giacomo Iapichino^c, Luca Carenzo^c, Maurizio Cecconi^{b,c}, Paola Ferrazzi^a, Tim Sebastian^d, Nils Kucher^d, Jan-Dirk Studt^e, Clara Sacco^a, Bertuzzi Alexia^f, Maria Teresa Sandri^g, Stefano Barco^{d,h}, on behalf of the Humanitas COVID-19 Task Force

388 patients (median age 66 years, 68% men, 16% ICU) consecutive symptomatic pts with laboratoryproven COVID-19 admitted to a university hospital in Milan, Italy

Table 3

	Int	tensive care unit		Ger	neral ward		Total				
Thromboembolic events	n	% of closed cases $(n = 48)$	% of imaging tests performed*	n	% of closed cases $(n = 314)$	% of imaging tests performed*	n	% of closed cases $(n = 362)$	% of imaging tests performed		
At least one thromboembolic event	8	16.7% (95%CI 8.7%–29.6%)	-	20	6.4% (95%CI 4.2%–9.6%)	-	28	7.7% (95%CI 5.4%–11.0%)	-		
VTE	4	8.3%	22%	12	3.8%	46%	16	4.4%	36%		
PE (\pm DVT)	2	4.2%	25%	8	2.5%	36%	10	2.8%	33%		
Isolated pDVT	1	2.1%	7%	3	1.0%	44%	4	1.1%	21%		
Isolated dDVT	0	-	-	1	0.3%	13%	1	0.3%	13%		
Catheter-related DVT	1	2.1%	50%	0	-	-	1	0.3%	50%		
Ischemic stroke	3	6.3%	-	6	1.9%	_	9	2.5%	-		
ACS/MI	1	2.1%	-	3	1.0%	-	4	1.1%	-		

Venous and arterial thromboembolic events in hospitalized COVID-19 patients.

ACS, acute coronary syndrome; DVT, deep vein thrombosis; MI, myocardial infarction; pDVT, proximal deep vein thrombosis; dDVT, distal DVT; PE, pulmonary embolism; VTE, venous thromboembolism.

Overall: 9/362 (2.5%) ICU: 3/48 (6.3%)

Thrombosis Research 191 (2020) 9–14

Incidence of thrombotic complications in critically ill ICU patients with COVID-19

F.A. Klok^a,*, M.J.H.A. Kruip^b, N.J.M. van der Meer^c, M.S. Arbous^d, D.A.M.P.J. Gommers^e, K.M. Kant^f, F.H.J. Kaptein^a, J. van Paassen^d, M.A.M. Stals^a, M.V. Huisman^{a,1}, H. Endeman^{e,1}

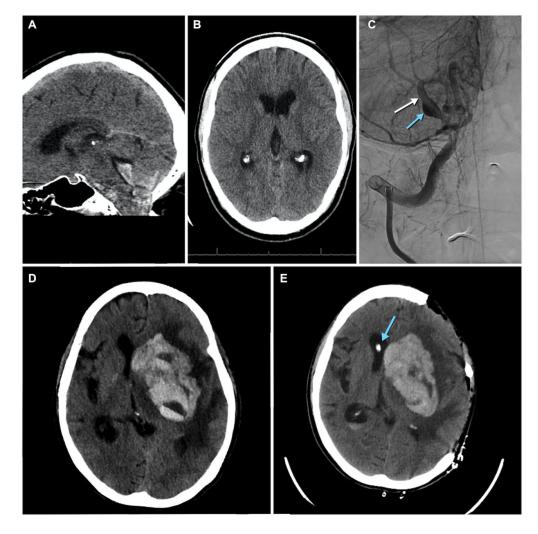
184 consecutive ICU patients (mean age 64 years, 76% men, median duration 7 days [IQR 1-13]) with laboratory-proven COVID-19 pneumonia in 3 Dutch Hospitals.

Table 3Description of thrombotic complications.

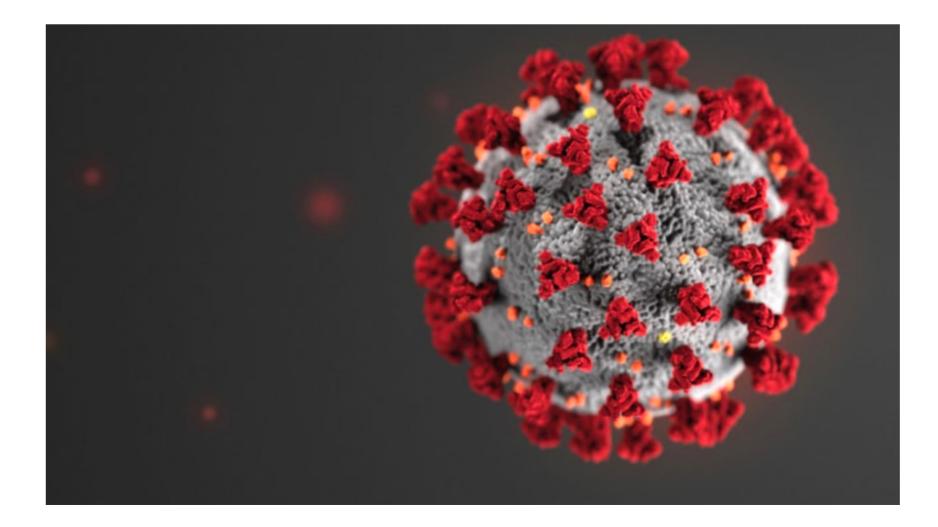
Type of event	Number of cases	Relevant details
Pulmonary embolism Other venous thromboembolic events	25 3	 18 cases with at least PE in segmental arteries, 7 cases PE limited to subsegmental arteries 1 proximal deep-vein thrombosis of the leg 2 catheter related upper extremity thrombosis
Arterial thrombotic events	3	 All ischemic strokes

Note: acute pulmonary embolism was diagnosed with CT-pulmonary angiography, deep vein thrombosis/upper extremity vein thrombosis was diagnosed with ultrasonography, strokes were diagnosed with CT.

ICU: 3/184 (1.6%)



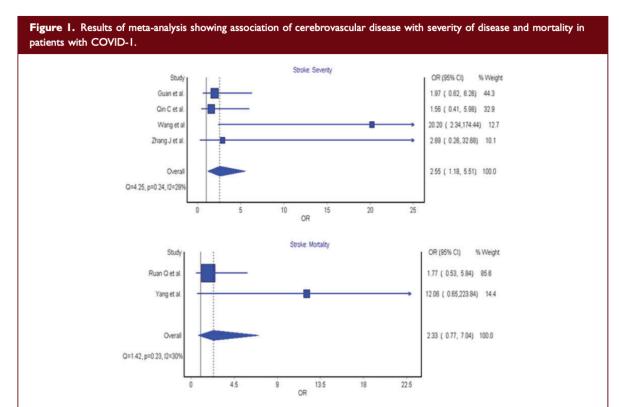
Journal of Neurology, Neurosurgery & Psychiatry


Status of SARS-CoV-2 in cerebrospinal fluid of patients with COVID-19 and stroke

Fadi Al Saiegh¹, Ritam Ghosh¹, Adam Leibold¹, Michael B Avery¹, Richard F Schmidt¹, Thana Theofanis¹, Nikolaos Mouchtouris¹, Lucas Philipp¹, Stephen C Peiper², Zi-Xuan Wang³, Fred Rincon¹, Stavropoula I Tjoumakaris¹, Pascal Jabbour¹, Robert H Rosenwasser¹, M. Reid Gooch¹

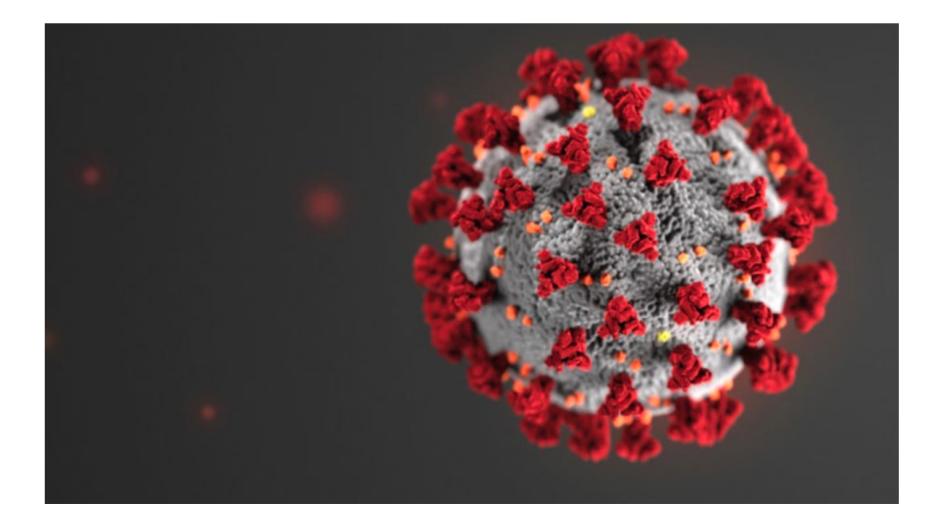
- 31 y/o man flu-like sx: later SAH from a ruptured PICA aneurysm
- 62 y/o woman no COVID sx: AIS due to LMCA occlusion s/p MT with massive hemorrhagic conversion requiring a decompressive hemicraniectomy 10 days later
- Both patients' CSF repeatedly negative on real-time PCR analysis despite concurrent neurological disease
- ? Underlying inflammatory and hypercoagulable state may incite cerebrovascular disease without disruption of the blood–brain barrier

COVID-19: Stroke as a Disease Modifier

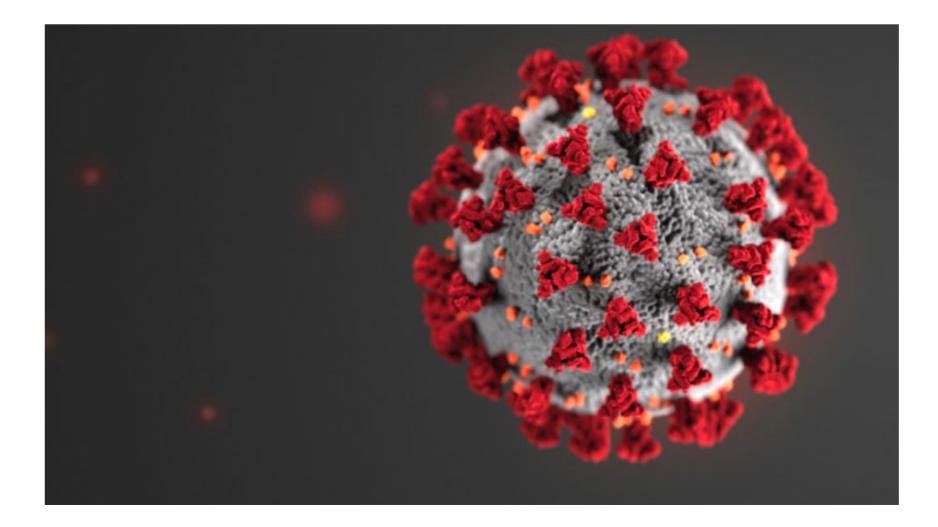


Cerebrovascular disease is associated with an increased disease severity in patients with Coronavirus Disease 2019 (COVID-19): A pooled analysis of published literature International Journal of Stroke 0(0) 1-5 © 2020 World Stroke Organization Article reuse guidelines: sagepub.com/journals-permissions DOI: 10.1177/1747493020921664 journals-sagepub.com/home/wso ©SAGE

Gaurav Aggarwal¹, Giuseppe Lippi^{2,*} and Brandon Michael Henry^{3,*}


			Severe patient	s/non-survivors			Non-severe patients/survivors						
Study	Sample size	Outcomes	n (%)	Age (yrs) ^a	Women (%)	Cerebrovascular disease n (%)	n (%)	Age (yrs)ª	Women (%)	Cerebrovascular disease n (%)			
Guan et al. ⁵	1099	Admission to ICU, MV, Death	173 (15.7%)	52 (40–65)	42%	4 (2.3%)	926 (84.3%)	45 (34–57)	42%	(.2%)			
Qin et al. ⁶	452	Respiratory distress/ insufficiency	286 (63.3%)	61 (51-69)	45.8%	8 (2.8%)	166 (36.7%)	53 (41.25-62)	51.8%	3 (1.8%)			
Ruan et al. ⁷	150	Death	68 (45.3%)	67 (15–81)	28%	7 (10%)	82 (54.6%)	50 (44–81)	35%	5 (6%)			
Wang et al. ⁸	138	Clinical variables, MV, death	36 (26.1%)	66 (57–78)	39%	6 (16.7%)	102 (73.9%)	51 (37–62)	48%	I (1%)			
Yang et al. ⁹	52	Death	32 (61.5%)	64.6 (11.2)	34%	7 (22%)	20 (38.5%)	51.9 (12.9)	30%	0 (0%)			
Zhang et al. ¹⁰	140	Respiratory distress/ insufficiency	58 (41.4%)	64 (25–87)	43%	2 (3.4%)	82 (58.6%)	52 (26–78)	54%	I (1.2%)			

^aAge data presented as median (IQR) or mean (SD). MV: mechanical ventilation; ICU: intensive care unit; NR: not reported.



Conclusion: There is a \sim 2.5-fold increase in odds of severe COVID-19 illness with a history of cerebrovascular disease.

A More Definite Problem: The COVID-19 Collateral Damage on the Non-COVID-19 Stroke Care...

COVID-19 in Stroke Care: USA

MARCH 17, 2020

Artificial intelligence recruited to find clues about COVID-19

by Gopal Ratnam

Credit: CC0 Public Domain

COVID-19 in Stroke Care: USA

Methodology

Data downloaded from Viz Analytics[™], a dynamic, live clinical intelligence software package, were analyzed from suspected stroke patients from 38 US hospitals. Number of patients, scans, age, and LVO alerts were analyzed over a period of 25 weeks, between November 4, 2019 - April 26, 2020. CT Perfusion core was measured by rCBF < 30%.

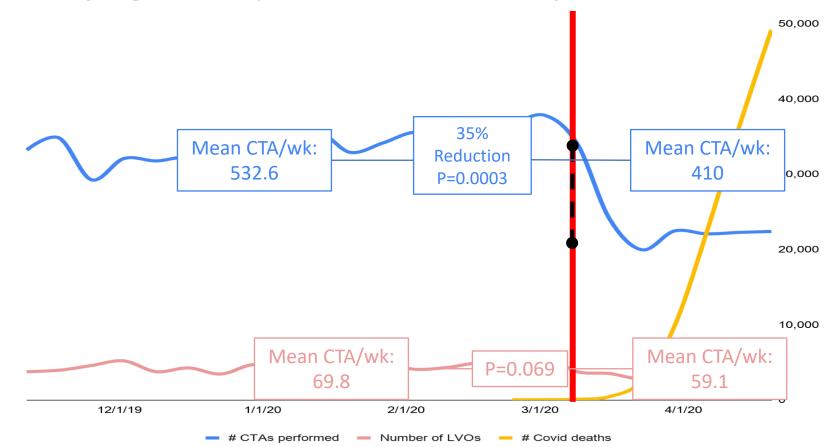
The weekly mean number of CTAs, LVOs and core volume, and median age, were plotted versus time, relative to the incidence of COVID cases. The collection period was divided into pre and post Covid period, defined as before March 1st 2020, and after March 1st, 2020.

P values were calculated to compare means of pre and post Covid period, with significance demonstrated at <0.05.

COVID-19 in Stroke Care: USA

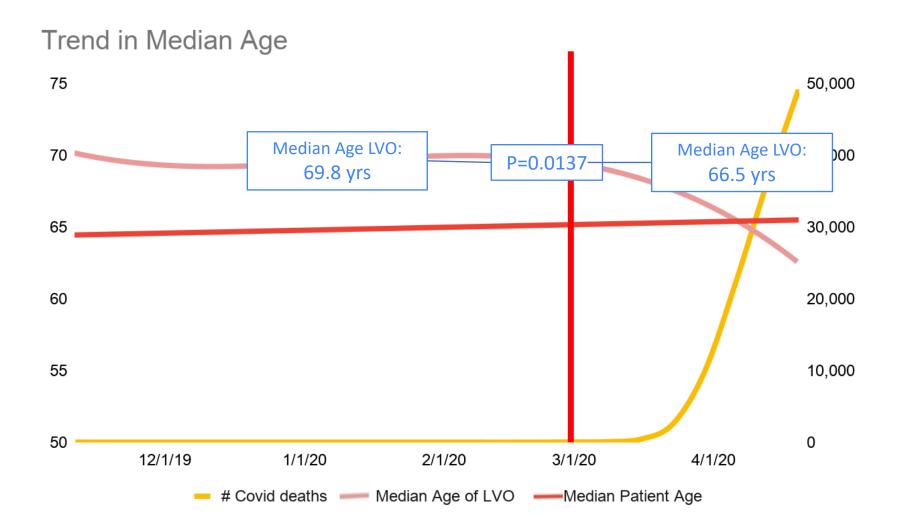
Summary Statistics

Study period: November 4th, 2019 - April 26, 2020

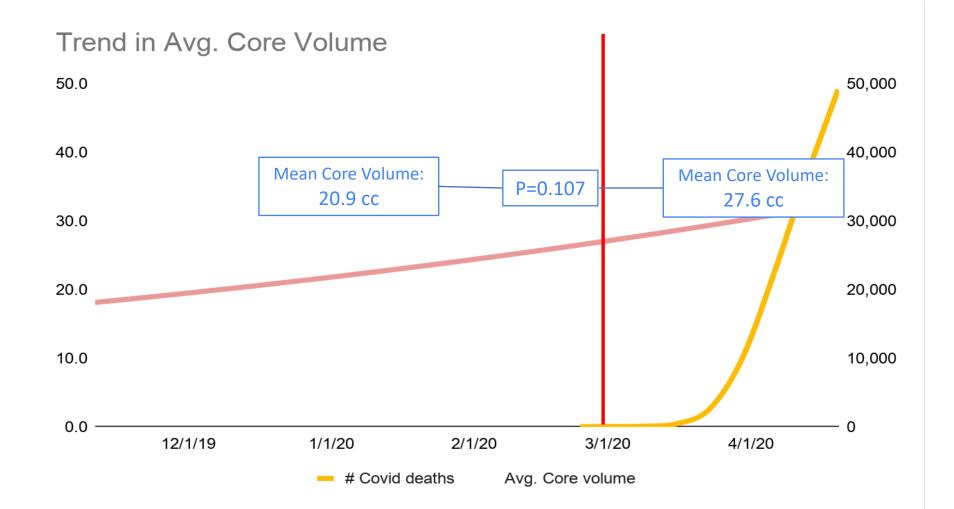

Total Number of Patients: 75,079 Total number CTAs in study: 11,801 Total Number of CTPs in study: 3,616 Total Number and % of LVOs: 1,594, 13%

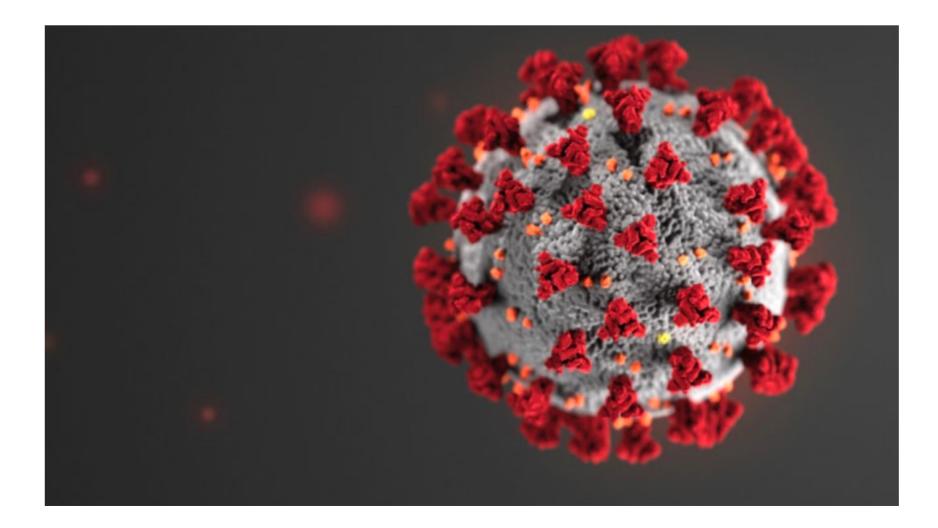
Median Age for the Total Population: 63 +/- 18 Median Age for the LVO Population: 67 +/- 16 Average Core Volume for the Total Population: 9 +/- 28 Average Core for the LVO Population: 22 +/- 40

National CTA v LVO



Nationally: Significant Drop in CTAs. LVO volume steady


National Median Age of LVO



National Av Core Volume

COVID-19 in Stroke Care: Italy

Neurological Sciences (2020) 41:1003–1005 https://doi.org/10.1007/s10072-020-04375-9

COVID-19

Acute stroke management pathway during Coronavirus-19 pandemic

Claudio Baracchini¹ · Alessio Pieroni¹ · Federica Viaro¹ · Vito Cianci² · Anna M. Cattelan³ · Ivo Tiberio⁴ · Marina Munari⁵ · Francesco Causin⁶

Compared with the same period in 2019, we have observed a half of minor strokes, TIAs, and transfers from spokes, along with longer onset-to-door and door-to-treatment times for major strokes.

- Intravenous thrombolysis: decreased by 26%
- Bridging therapy (combined IVT and MT): decreased by 30%
- Primary MT: increased by 41% "most of these patients had very serious strokes arriving late, sometimes too late"

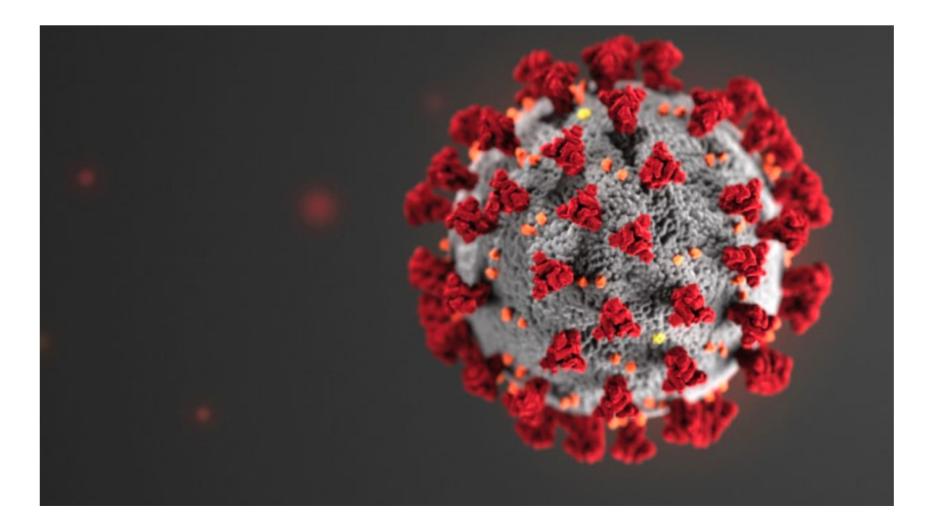
The Baffling Case of Ischemic Stroke Disappearance from the Casualty Department in the COVID-19 Era

Nicola Morelli^a Eugenia Rota^b Chiara Terracciano^a Paolo Immovilli^a Marco Spallazzi^a Davide Colombi^c Domenica Zaino^a Emanuele Michieletti^c Donata Guidetti^a

^aNeurology Unit, Guglielmo da Saliceto Hospital, Piacenza, Italy; ^bNeurology Unit, San Giacomo Hospital, Alessandria, Italy; ^cRadiology Unit, Guglielmo da Saliceto Hospital, Piacenza, Italy

Clinical Neurology: Editorial

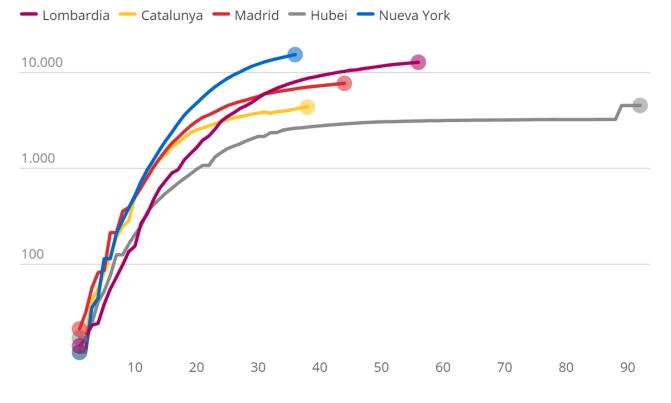
Eur Neurol DOI: 10.1159/000507666 Received: March 27, 2020 Accepted: March 31, 2020 Published online: April 14, 2020


The question is: what can we say about the remaining non-COVID-19 pathologies?

Piacenza province (about 280,000 inhabitants) - one of the epicenters of the Italian epidemic, listing 2,276 cases at the time of writing.

Over the past 5 years (2015–2019): annual average of 612 new cases of ischemic stroke, with a **monthly average of 51 cases**, 21% LVOS.

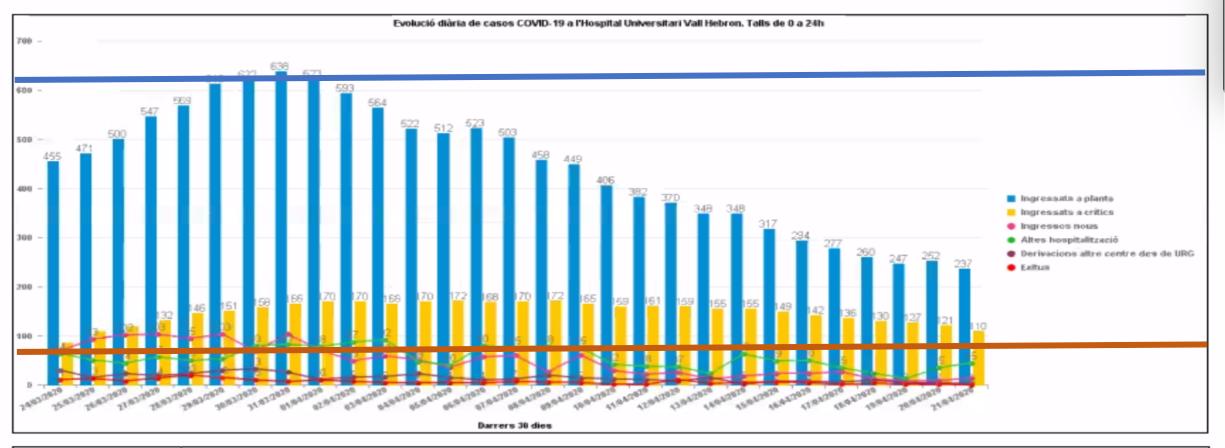
Between February 21, 2020 (first SARS-CoV-2 patient recorded in Italy – in Codogno, a nearby city), and March 25, 2020, there were **only 6 admissions** from the Casualty Department for ischemic stroke (2 transient ischemic attacks, 1 cardioembolic LVO, and 3 lacunar stroke).


COVID-19 in Stroke Care: Barcelona

Courtesy of Marc Ribo, MD

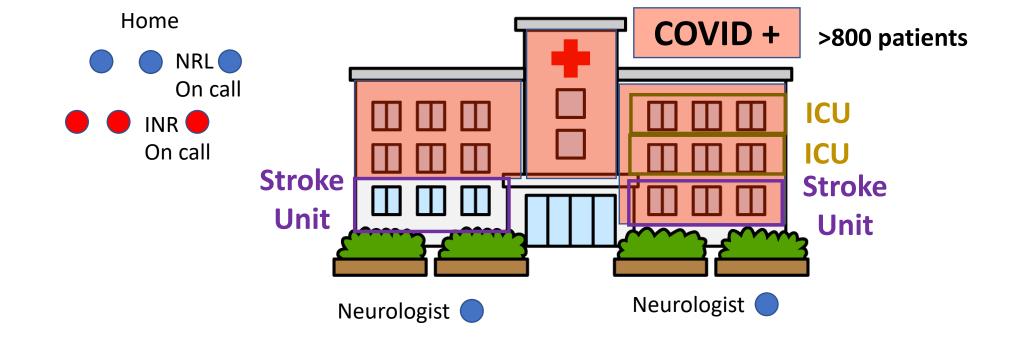
Comparación de la letalidad del Covid-19 en las diferentes regiones más afectadas

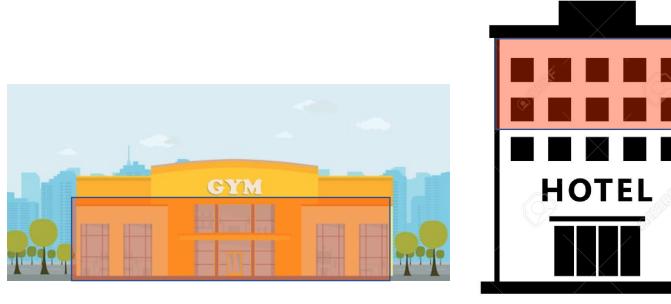
El número de fallecidos por Covid-19 desde el primer día en que se registraron 10 muertes


El salto final de la curva de Hubei se debe a un cambio en el recuento de fallecidos en China

Fuente: John Hopkins, Ministerio de Sanidad, Dipartimento della Protezione Civile LA VANGUARDIA

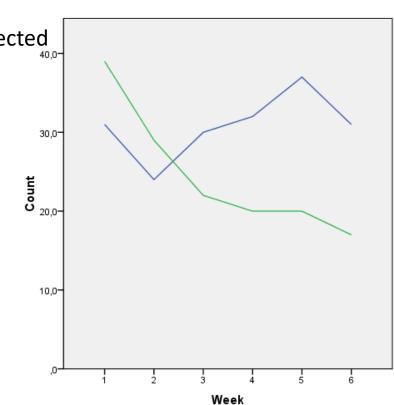
08:11 11 2 Spain Total deaths **19,209** COVID-19 deaths projected by August 4, 2020 May 10, 2020 * Projected 22k -Total deaths* 18,853 (17,691-20,295) 20k 18k 16k 14k Total deaths 12k 10k 8k 6k 4k 2k Mar 01 Apr 01 May 01 Jun 01 Jul 01 Aug 01 Date Total deaths Total deaths (projected) All deaths specific to COVID-19 patients. Shaded area indicates uncertainty (i)




sistemes.informacio@vhebron.net

Data	24/03	25/03	26/03	27/03	28/03	29/03	30/03	31/03	01/04	02/04	03/04	04/04	05/04	06/04	07/04	08/04	09/04	10/04	11/04	12/04	13/04	14/04	15/04	16/04	17/04	18/04	19/04	20/04	21/04
Ingressats a planta	455	471	500	547	569	613	622	638	623	593	564	522	512	523	503	458	449	406	382	370	348	348	317	294	277	280	247	252	237
Ingressats a critics	86	109	120	132	146	151	158	166	170	170	166	170	172	168	170	172	165	159	161	159	155	155	149	142	136	130	127	121	110
Ingressos nous	69	93	102	103	95	103	69	103	71	49	59	51	36	57	60	26	61	29	22	25	12	18	23	23	27	12	8	9	14
Altes hospitalització	64	51	44	\$7	50	53	80	83	78	87	92	48	40	80	75	78	75	42	38	37	23	63	49	50	35	24	13	35	45
Derivacions altres centres URG	30	15	23	19	23	30	33	26	11	16	17	23	15	10	12	20	14	12	11	8	15	2	7	7	6	10	5	4	з
Exitus	11	13	-8	14	20	15	10	7	10	7	5	4	4	4	7	6	5	1	1	11	3	5	6	5	1	4	2	2	0

En cas que un pacient, en un mateix dia, hagi sigut traslladat entre diferents UTs (Planta / UCIs) pot comptabilitzar-se per duplicat. Talls de dia de 0 a 24h

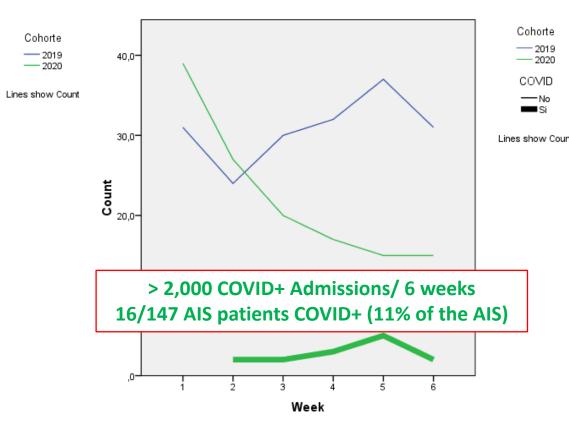

H O

First admited case

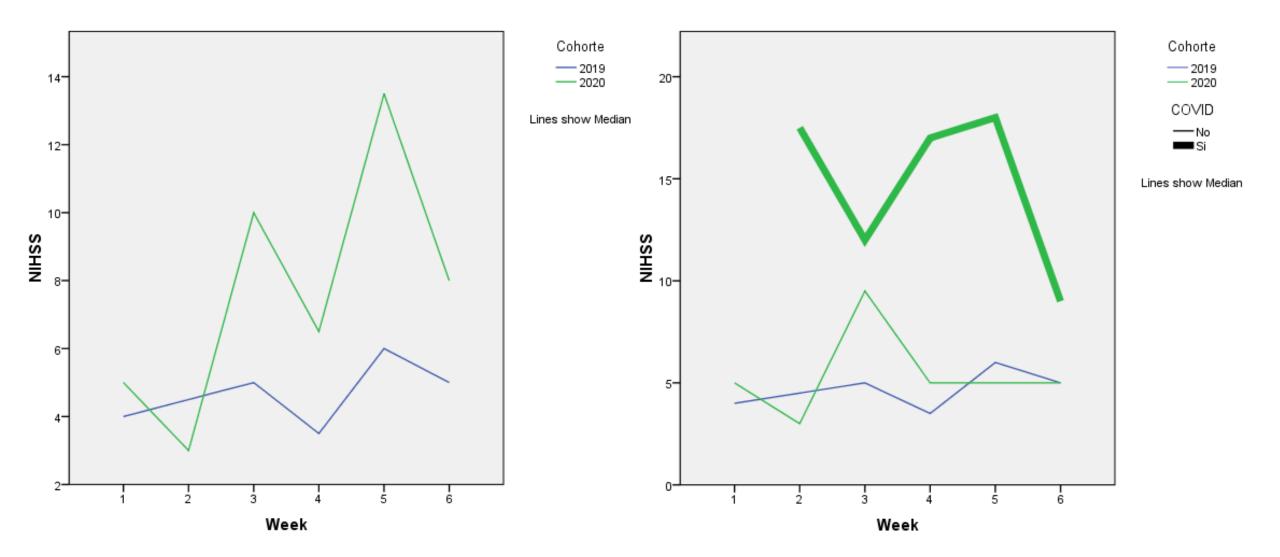
2019 García-Tornel 2020 (submited)

		N	larc	h				April							
s	м	т	w	т	F	s	1	s	м	т	w	т	F	5	
					1	2			1	2	3	4	5	ć	
3	4	5	6	7	8	9		7	8	9	10	11	12	1	
10	11	12	13	14	15	16		14	15	16	17	18	19	2	
17	18	19	20	21	22	23	1	21	22	23	24	25	26	2	
24	25	26	27	28	29	30	1	28	29	30					
31															

Patients admitted for a suspected stroke in **2020: 147 (44%)** Vs **2019: 185 (56%)**

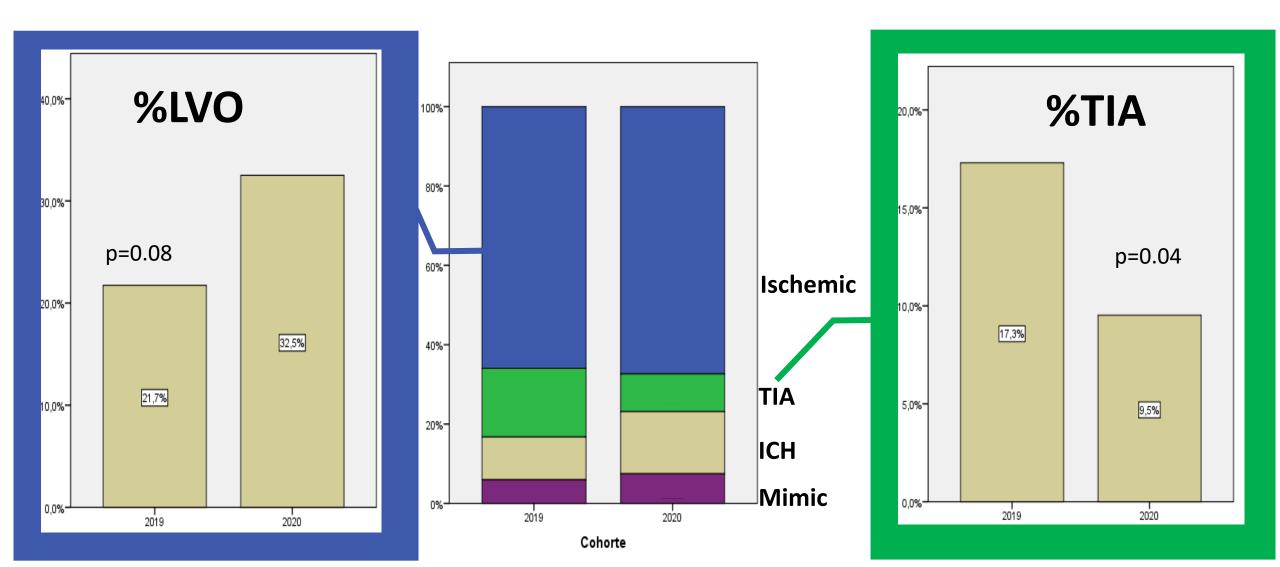


March											
S	м	т	w	т	F	S					
1	(2)	3	4	5	6	7					
8	9	10	11	12	13	14					
15	16	17	18	19	20	21					
22	23	24	25	26	27	28					
29	30	31									


2020

	April												
S	м	т	w	Т	F	S							
			1	2	3	4							
5	6	7	8	9	10	11							
12	13	14	15	16	17	18							
19	20	21	22	23	24	25							
26	27	28	29	30									

Lockdown


NIHSS on admission

Arrival to the Hospital

Stroke type

03:30 → II < ID

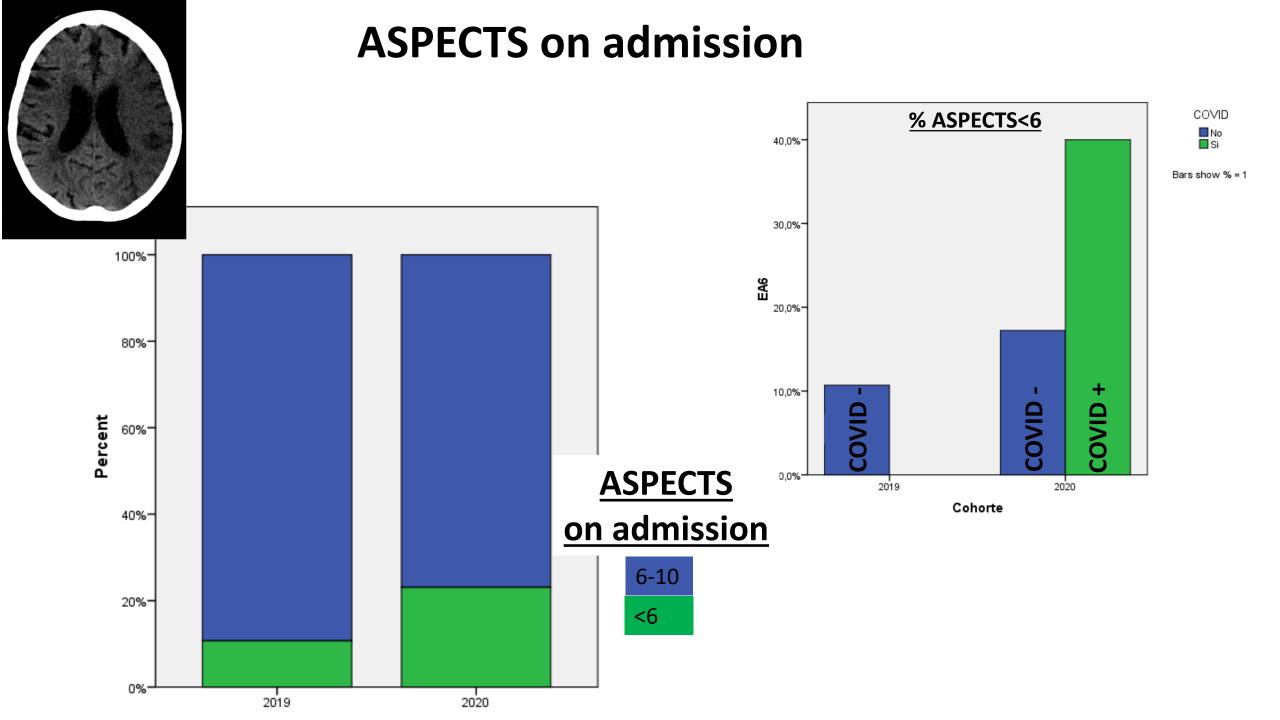
Los infartados estan llegando tarde por miedo a ir al hospital

• Cardiólogos de diez centros catalanes piden a sus enfermos que no esperen



ANA MACPHERSON, BARCELONA 30/03/2020 01:51 | Actualizado a 30/03/2020 02:44

"¡La gente está pasando sus infartos en casa por miedo al coronavirus!", alerta **Antoni Bayés, responsable de**

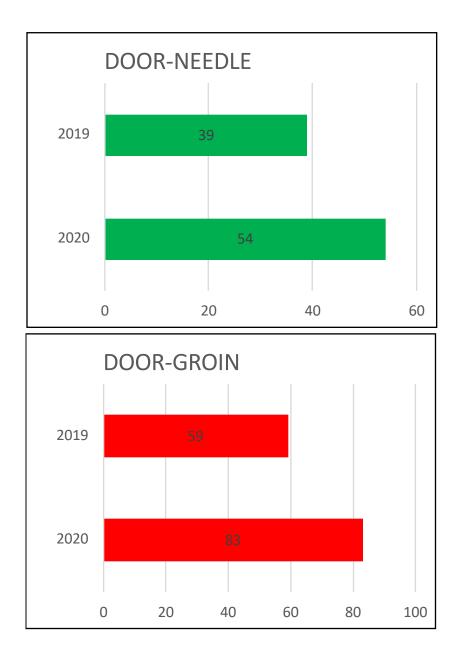


LOWER NUMBER OF ADMISSIONS BUT SIMILAR NUMBER OF REPERFUSION TREATMENTS

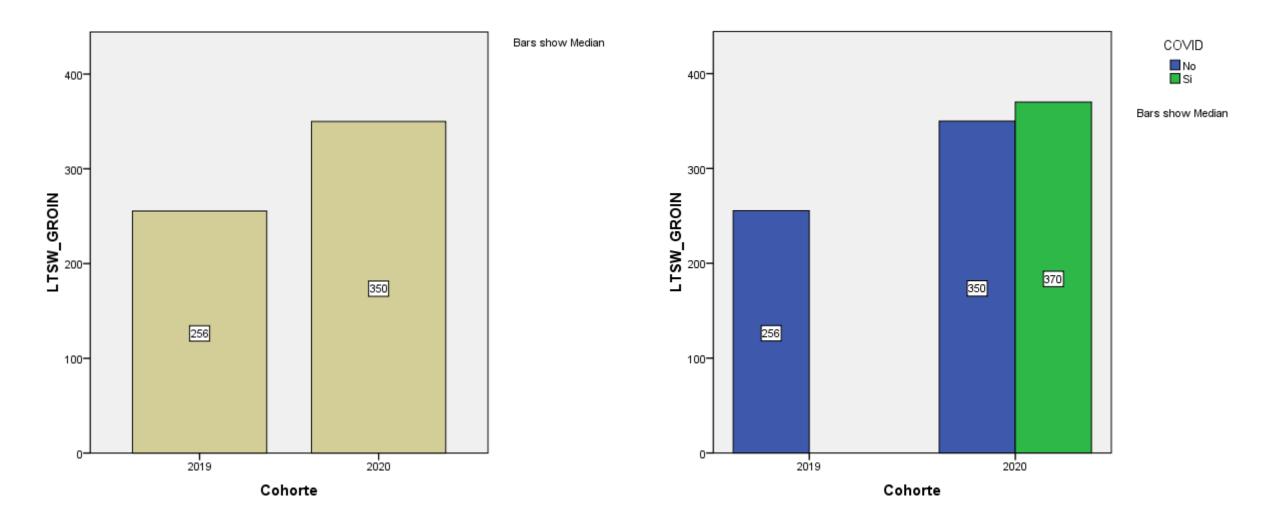
Cohorte

PRE-HOSPITAL

Week

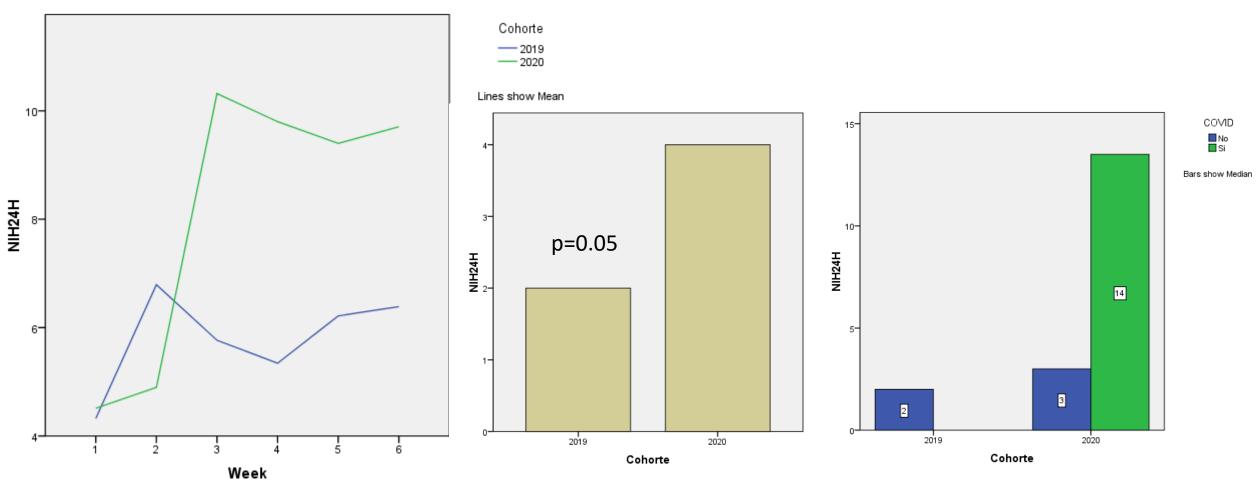

ŝ.

6

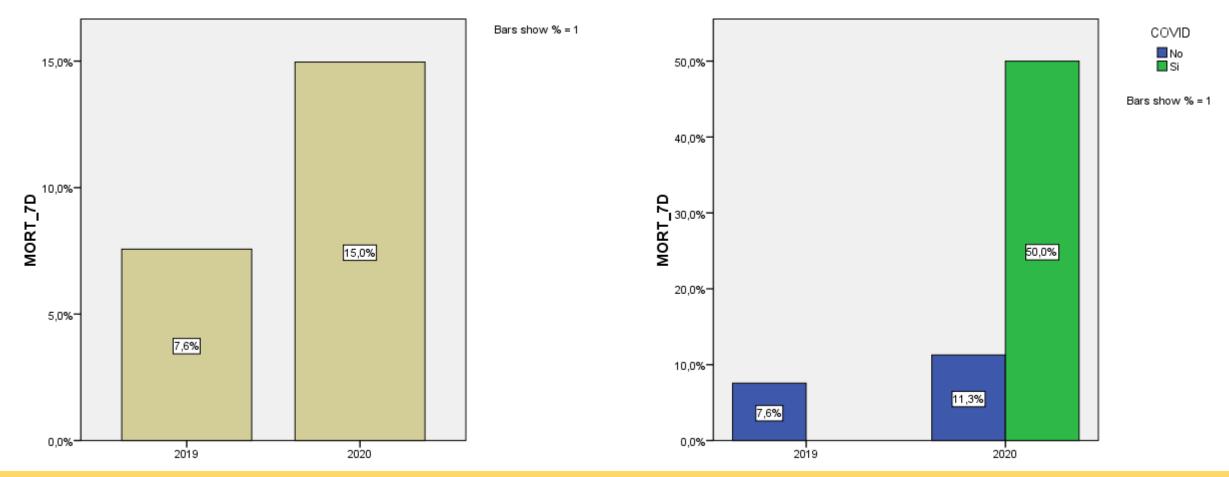

0-

ż

IN-HOSPITAL



EVT: LTSW TO GROIN



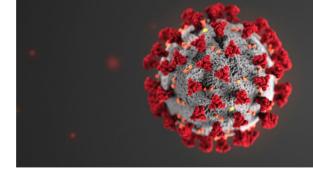
OUTCOME

24 NIHSS

MORTALITY AT 7 DAYS

A binary logistic regression analysis adjusted by age and NIHSS score showed 2 independent predictors of early mortality: Patients in 2020-C (OR 3.1 Cl 1.1-8.8 p=0.03) SARS-CoV-2 infection (OR 7.1 Cl 1.8-29, p<0.01)

First COVID+ EVT: march 26


March 26 – April 9: 16 EVT (8 COVID+ 50%) (5 died first days due to respiratory failure)

SICH: 0%

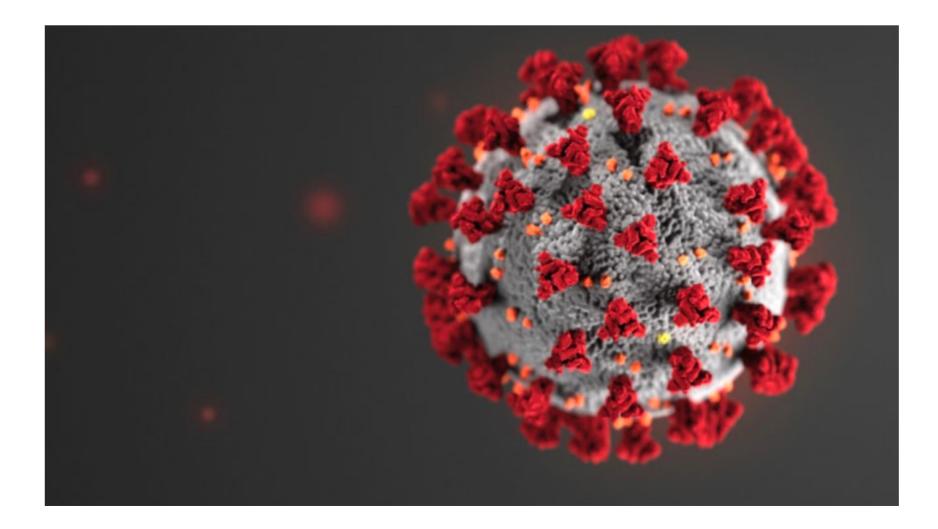
PHILIPS

7 IV tPA Tx in COVID+: 0% SICH

The COVID-19 Collateral Damage to Stroke Care:

- The pandemic is a major healthcare disaster with significant impact on stroke care (and likely other cardiovascular emergencies)
- High complexity:
 - home confinement and the fear of hospital consultation
 - Impact of Pre- and Intra-Hospital Work-Flow
 - Potential greater severity of stroke in COVID+ patients

We Must Also Focus on the COVID-19 Impact on Non-COVID Diseases...


Editorial

Challenges and Potential Solutions of Stroke Care During the Coronavirus Disease 2019 (COVID-19) Outbreak

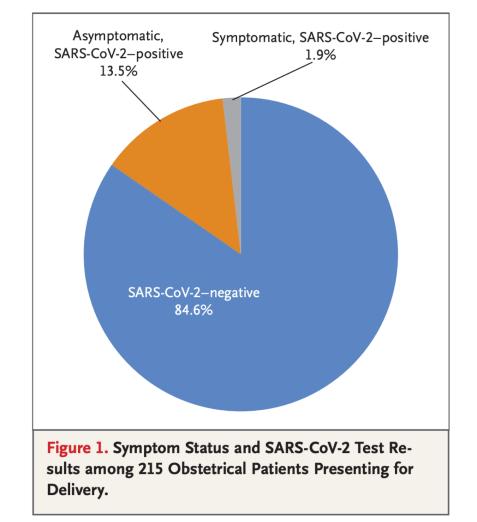
Jing Zhao, MD, PhD; Anthony Rudd[®], FRCP (Lond); Renyu Liu[®], MD, PhD

- 3. Inform the emergency medical system and the public that these centers will be protected and will remain fully operational even during crises.
- 4. Improve education of health professionals and the public, especially those who are at high risk of stroke, to recognize stroke and call emergency medical services immediately to be taken to one of the designated stroke centers so as to avoid significant delay in transferring patient from one hospital to the other.

Procedural Aspects: How Much PPE?

CORRESPONDENCE

Universal Screening for SARS-CoV-2 in Women Admitted for Delivery


215 pregnant women on delivery unit

Four women (1.9%) had fever or other symptoms of Covid-19 on admission, and all 4 women tested positive for SARS-CoV-2

Nasopharyngeal swabs were obtained from 210 women with no Covid-19 symptoms, 29 (13.7%) were positive for SARS-CoV-2. One (3.4%) positive patient developed COVID-19 fever.

88% of SARS-CoV-2 positive patients on admission had no symptoms at presentation!

April 13, 2020 DOI: 10.1056/NEJMc2009316

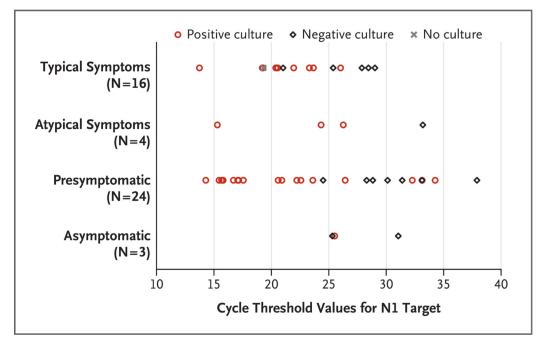
The NEW ENGLAND JOURNAL of MEDICINE

EDITORIAL

ORIGINAL ARTICLE

Presymptomatic SARS-CoV-2 Infections and Transmission in a Skilled Nursing Facility

M.M. Arons, K.M. Hatfield, S.C. Reddy, A. Kimball, A. James, J.R. Jacobs, J. Taylor, K. Spicer, A.C. Bardossy, L.P. Oakley, S. Tanwar, J.W. Dyal, J. Harney, Z. Chisty, J.M. Bell, M. Methner, P. Paul, C.M. Carlson, H.P. McLaughlin, N. Thornburg, S. Tong, A. Tamin, Y. Tao, A. Uehara, J. Harcourt, S. Clark, C. Brostrom-Smith, L.C. Page, M. Kay, J. Lewis, P. Montgomery, N.D. Stone, T.A. Clark, M.A. Honein, J.S. Duchin, and J.A. Jernigan, for the Public Health–Seattle and King County and CDC COVID-19 Investigation Team*


Asymptomatic Transmission, the Achilles' Heel of Current Strategies to Control Covid-19

Monica Gandhi, M.D., M.P.H., Deborah S. Yokoe, M.D., M.P.H., and Diane V. Havlir, M.D.

89 SNF Residents

- 64% (n=57, age, 78.6±9.5y) tested positive for SARS-CoV-2 either during the point-prevalence surveys, clinical evaluation, or postmortem examination
- 76 residents participated in the first point-prevalence survey:
 - 35% (17): typical symptoms
 - 8% (4): only atypical symptoms
 - **56% (27):** no new symptoms
 - 89% (24) new symptoms within 7 (median, 4 [IQR, 3-5]) days

56% of SARS-CoV-2 positive patients on first survey had no symptoms at that time!

BRIEF COMMUNICATION

Check for updates

Temporal dynamics in viral shedding and transmissibility of COVID-19

Xi He^{1,3}, Eric H. Y. Lau¹, Peng Wu², Xilong Deng¹, Jian Wang¹, Xinxin Hao², Yiu Chung Lau², Jessica Y. Wong², Yujuan Guan¹, Xinghua Tan¹, Xiaoneng Mo¹, Yanqing Chen¹, Baolin Liao¹, Weilie Chen¹, Fengyu Hu¹, Qing Zhang¹, Mingqiu Zhong¹, Yanrong Wu¹, Lingzhai Zhao¹, Fuchun Zhang¹, Benjamin J. Cowling^{0,2,4}, Fang Li^{1,4} and Gabriel M. Leung^{0,2,4}

We report temporal patterns of viral shedding in 94 patients with laboratory-confirmed COVID-19 and modeled COVID-19 infectiousness profiles from a separate sample of 77 infector-infectee transmission pairs. We observed the highest viral load in throat swabs at the time of symptom onset, and inferred that infectiousness peaked on or before symptom onset. We estimated that 44% (95% confidence interval, 25-69%) of secondary cases were infected during the index cases' presymptomatic stage, in settings with substantial household clustering, active case finding and quarantine outside the home. Disease control measures should be adjusted to account for probable substantial presymptomatic transmission.

In conclusion, we have estimated that **viral shedding of patients with laboratoryconfirmed COVID-19 peaked on or before symptom onset**, and a substantial proportion of transmission probably occurred before first symptoms in the index case.

RESEARCH ARTICLE

CORONAVIRUS

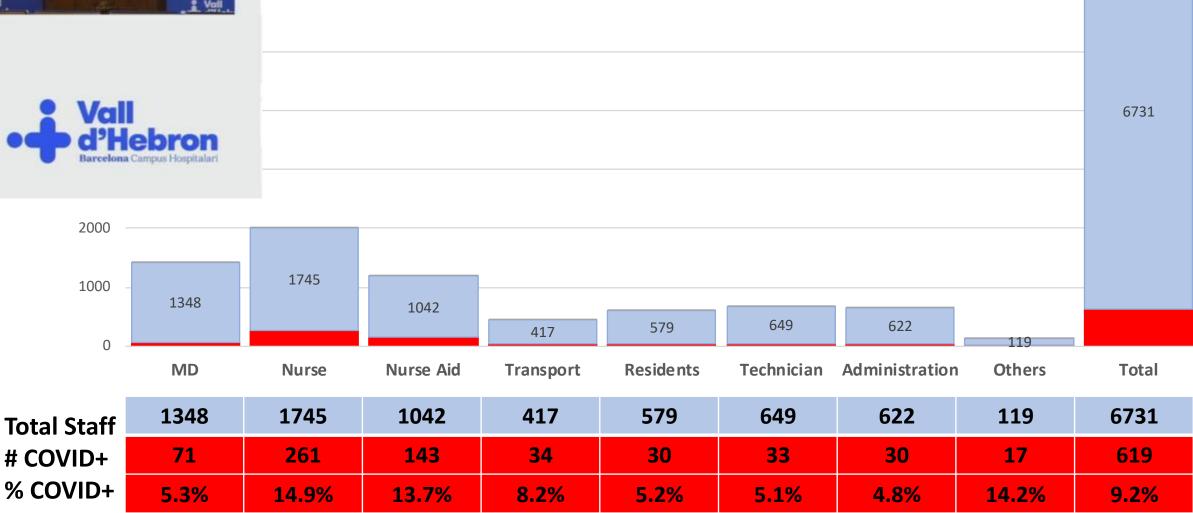
Substantial undocumented infection facilitates the rapid dissemination of novel coronavirus (SARS-CoV-2)

Ruiyun Li¹*, Sen Pei²*+, Bin Chen³*, Yimeng Song⁴, Tao Zhang⁵, Wan Yang⁶, Jeffrey Shaman²+

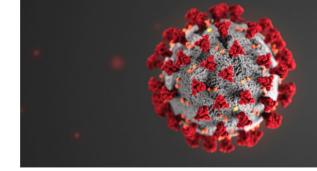
Estimation of the prevalence and contagiousness of undocumented novel coronavirus [severe acute respiratory syndrome–coronavirus 2 (SARS-CoV-2)] infections is critical for understanding the overall prevalence and pandemic potential of this disease. Here, we use observations of reported infection within China, in conjunction with mobility data, a networked dynamic metapopulation model, and Bayesian inference, to infer critical epidemiological characteristics associated with SARS-CoV-2, including the fraction of undocumented infections and their contagiousness. We estimate that 86% of all infections were undocumented [95% credible interval (CI): 82–90%] before the 23 January 2020 travel restrictions. The transmission rate of undocumented infections per person was 55% the transmission rate of documented infections were the source of 79% of the documented cases. These findings explain the rapid geographic spread of SARS-CoV-2 and indicate that containment of this virus will be particularly challenging.

Virological assessment of hospitalized patients with COVID-2019.

Wölfel R¹, Corman VM², Guggemos W³, Seilmaier M³, Zange S¹, Müller MA², Niemeyer D², Jones TC^{2,4}, Vollmar P¹, Rothe C⁵, Hoelscher M⁵, Bleicker T², Brünink S², Schneider J², Ehmann R¹, Zwirglmaier K¹, Drosten C⁶, Wendtner C⁷.


Author information

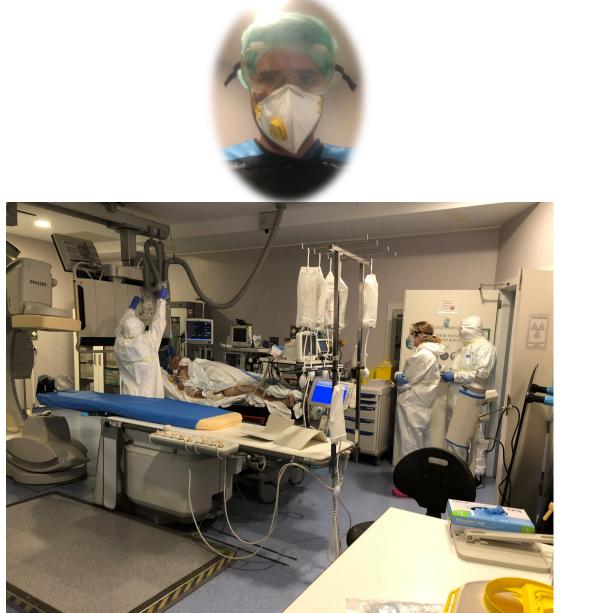
Abstract

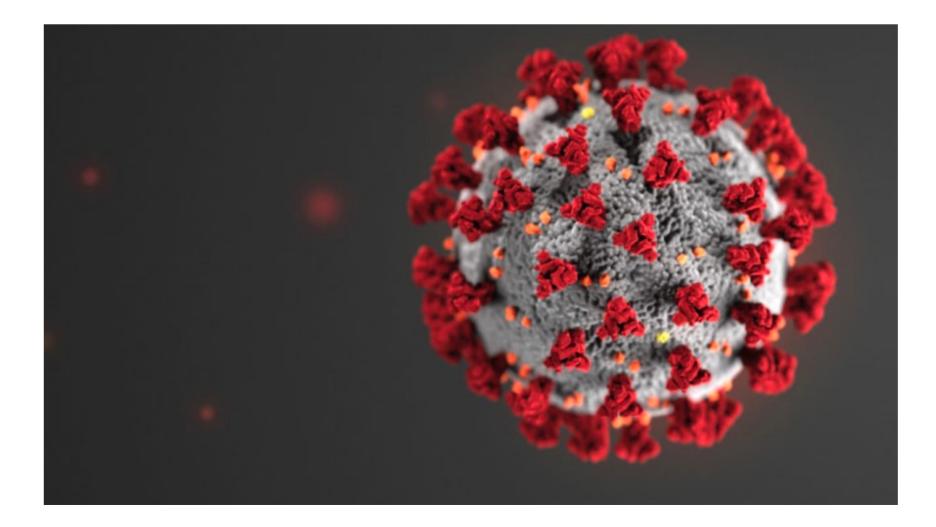

Coronavirus disease 2019 (COVID-19) is an acute infection of the respiratory tract that emerged in late 2019^{1,2}. Initial outbreaks in China involved 13.8% of cases with severe courses, and 6.1% of cases with critical courses³. This severe presentation may result from the virus using a virus receptor that is expressed predominantly in the lung^{2,4}; the same receptor tropism is thought to have determined the pathogenicity-but also aided in the control-of severe acute respiratory syndrome (SARS) in 2003⁵. However, there are reports of cases of COVID-19 in which the patient shows mild upper respiratory tract symptoms, which suggests the potential for pre- or oligosymptomatic transmission⁶⁻⁸. There is an urgent need for information on virus replication, immunity and infectivity in specific sites of the body. Here we report a detailed virological analysis of nine cases of COVID-19 that provides proof of active virus replication in tissues of the upper respiratory tract. Pharyngeal virus shedding was very high during the first week of symptoms, with a peak at 7.11 × 10⁸ RNA copies per throat swab on day 4. Infectious virus was readily isolated from samples derived from the throat or lung, but not from stool samples-in spite of high concentrations of virus RNA. Blood and urine samples never yielded virus. Active replication in the throat was confirmed by the presence of viral replicative RNA intermediates in the throat samples. We consistently detected sequence-distinct virus populations in throat and lung samples from one patient, proving independent replication. The shedding of viral RNA from sputum outlasted the end of symptoms. Seroconversion occurred after 7 days in 50% of patients (and by day 14 in all patients), but was not followed by a rapid decline in viral load. COVID-19 can present as a mild illness of the upper respiratory tract. The confirmation of active virus replication in the upper respiratory tract has implications for the containment of COVID-19.

Infection Among Hospital Staff in Barcelona

Procedural Aspects: How Much PPE?

- History is limited in the setting of Acute Stroke
- High Rates of Asymptomatic and Atypical Patients (? ~55-90%)
- Higher viral shedding in the upper (vs. lower) respiratory tract vs. SARS and Influenza
- Early and Pre-Symptomatic Spread (? ~45-55%)


Do Not Trust COVID-19 Screening to Make Intra-Procedural Decisions Regarding PPE! We are the Gladiators in this Battle – A Gladiator would never go to a fight without a strong shield....


Grady Memorial Hospital, Atlanta, USA

Vall 'Hebron Hospital, Barcelona, Spain

Anesthesia Management: A Change is just Different not Necessary Better ...

Mechanical thrombectomy in the era of the COVID-19 pandemic.

Emergency preparedness for neuroscience teams.

A guidance statement from the Society of Vascular & Interventional Neurology

Cover Title: Mechanical thrombectomy in the era of the COVID-19

Thanh N. Nguyen, MD FRCPc,¹ Mohamad Abdalkader, MD,² Tudor G. Jovin, MD,³ Raul G. Nogueira, MD,⁴ Ashutosh P. Jadhav, MD,⁵ Diogo C. Haussen, MD,⁴ Ameer E. Hassan, DO,⁶ Roberta Novakovic, MD,⁷ Sunil A. Sheth, MD,⁸ Santiago Ortega-Gutierrez, MD,⁹ MSc, Peter D. Panagos, MD,¹⁰ Steve M. Cordina, MD,¹¹ Italo Linfante, MD,¹² Ossama Yassin Mansour, MD PhD,¹³ Amer M. Malik, MD, MBA¹⁴ Sandra Narayanan, MD,⁵ Hesham E. Masoud, MD,¹⁵ Sherry Hsiang-Yi Chou,^{5, 16} MD, Rakesh Khatri, MD,¹⁷ Vallabh Janardhan, MD,¹⁸ Dileep R. Yavagal, MD,¹⁴ Osama O. Zaidat, MD,¹⁹ David M. Greer, MD,¹ David S. Liebeskind, MD.²⁰

Pre-hospital and Emergency Department care of acute LVO

- Every acute stroke patient (direct presenting to ED or in transfer) should be triaged for symptoms and signs of COVID-19, including potential contact.
- If there is positive screening for COVID-19, this patient should wear a surgical mask and immediately be placed in a negative pressure room in the ED.
- If unknown assume it is a possible case!
- Downsize stroke team and minimize exposure
- PPE including full sleeved gown, surgical mask, eye protection (face shield or equivalent) and gloves.

Pre-hospital and Emergency Department care of acute LVO

- Personal protection should be escalated to N95 mask, hair cap, double gloves, shoe covers in the setting of contact with confirmed COVID-19 patient and/or aerosolizing events such as coughing, sneezing, nebulizer treatment, suctioning, nasogastric tube placement, bag mask ventilation, CPR, and intubation.
- A dedicated CT scan room for COVID-19 patients should be established if multiple CT rooms are available.
- As it would minimize exposure to emergency department and CT suite personnel a "direct to the angiography suite" approach should be considered for stable transferred patients with stroke symptoms onset within 24 hours, particularly if the time from the outside hospital imaging to arrival is less than two hours and CT ASPECTS is <a>7.

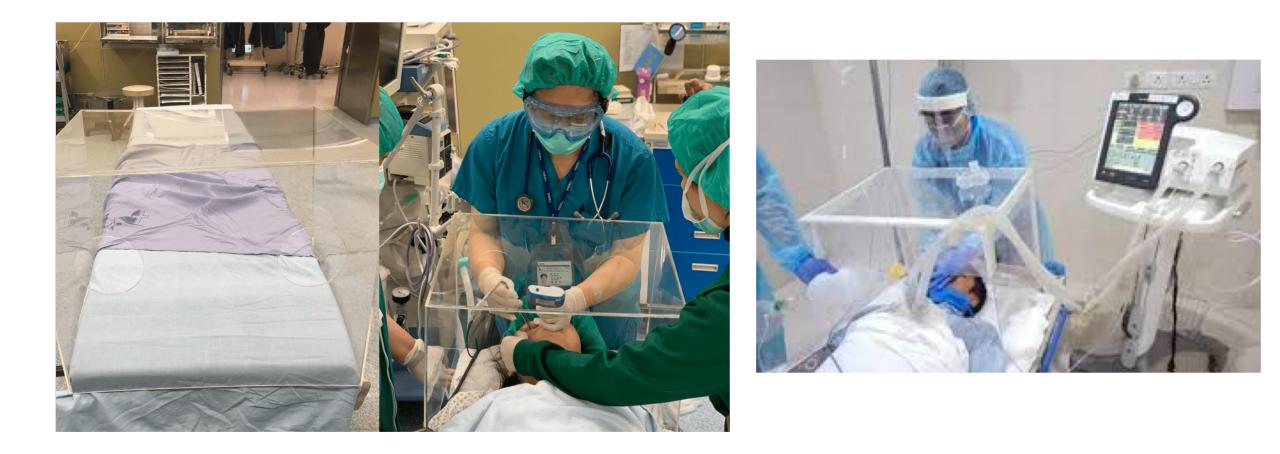
Airway Management for MT

- The anesthesiologist should be alerted early of a COVID-19 or suspect patient.
- Local policies for intubation and general anesthesia versus conscious sedation differ at different centers – not the best time for changes!
- If appropriate, consider conscious sedation as first-line:
 - to protect anesthesiologists from exposure
 - to protect our patients from unnecessary intubation
 - conserving mechanical ventilator and ICU resources.
- Converting a patient from conscious sedation to general anesthesia in the middle of the procedure in the angiography suite should be avoided due to high risk of aerosolization in a positive pressure room.

General Endotracheal Anesthesia

- Converting a patient from conscious sedation to general anesthesia in the middle of the procedure in the angiography suite should be avoided due to high risk of aerosolization in a positive pressure room.
- Early and controlled intubation is preferred if:
 - Acute respiratory distress/ hypoxemia/ high oxygen requirement
 - Unable to protect their airway/ low GCS (<9)
 - Agitation, uncooperative
 - Active vomiting
 - Active cough

• These are not isolated reasons to intubate on our opinion:


- Dominant cerebral hemisphere occlusions
- Aphasic patients
- High NIHSS (>15)

General Endotracheal Anesthesia

- Only essential personnel
- Avoid high flow pre-oxygenation
- Rapid sequence induction using video-laryngoscopy (most experienced person available to intubate)
- Vasopressors immediately available.
- Maintain SBP >140mmHg, SpO₂ >94%, normocarbia
- HEPA (High Efficiency Particulate Air) filter on ETT and CO₂ sampling line
- Avoid circuit disconnections
- Extubate preferably in a negative pressure location avoiding coughing

General Endotracheal Anesthesia

• An "aerosol box" can be used as a cover as an additional measure of PPE protection during intubation.

Monitored Anesthesia Care

- Patient should wear surgical mask
- Avoid high flow nasal cannula oxygen
- Careful titration of sedation to avoid oro- or nasopharyngeal airway insertion or chin lift/jaw thrust.
- Consider use of expiratory viral filter on oxygen masks.

TAVISH® OXYGEN MASK

SNACC Consensus Statement:

Anesthetic Management of Endovascular Treatment of Acute Ischemic Stroke During COVID-19 Pandemic: Consensus Statement from Society for Neuroscience in Anesthesiology & Critical Care (SNACC)

Endorsed by Society of Vascular & Interventional Neurology (SVIN), Society for NeuroInterventional Surgery (SNIS), Neurocritical Care Society (NCS), and European Society of Minimally Invasive Neurological Therapy (ESMINT) and American Association of Neurological Surgeons (AANS) and Congress of Neurological Surgeons (CNS) Cerebrovascular Section

Deepak Sharma, MD, DM¹ Mads Rasmussen, MD, PhD² Ruquan Han, MD, PhD³ Matthew Whalin, MD, PhD⁴ Melinda Davis, BMed, FANZCA₅ Andrew Kofke, MD MBA FCCM FNCS⁶ Lakshmikumar Venkatraghvan MD⁷ Radoslav Raychev MD, FAHA⁸ Justin F. Fraser, MD, FAANS, FAHA⁹

Society of NeuroInterventional Surgery recommendations for the care of emergent neurointerventional patients in the setting of covid-19

Justin F Fraser ⁽¹⁾, ¹ Adam S Arthur ⁽²⁾, ^{2,3} Michael Chen, ⁴ Michael Levitt, ⁵ J Mocco, ⁶ Felipe C Albuquerque, ⁷ Sameer A Ansari, ⁸ Guilherme Dabus, ⁹ Mahesh V Jayaraman, ¹⁰ William J Mack, ¹¹ James Milburn, ¹² Maxim Mokin ⁽³⁾, ¹³ Sandra Narayanan, ¹⁴ Ajit S Puri, ¹⁵ Adnan H Siddiqui ⁽³⁾, ^{16,17} Jenny P Tsai, ¹⁸ Richard P Klucznik¹⁹

Standards

Society of NeuroInterventional Surgery recommendations for the care of emergent neurointerventional patients in the setting of covid-19

Justin F Fraser ⁽¹⁾, ¹ Adam S Arthur ⁽¹⁾, ^{2,3} Michael Chen, ⁴ Michael Levitt, ⁵ J Mocco, ⁶ Felipe C Albuquerque, ⁷ Sameer A Ansari, ⁸ Guilherme Dabus, ⁹ Mahesh V Jayaraman, ¹⁰ William J Mack, ¹¹ James Milburn, ¹² Maxim Mokin ⁽¹⁾, ¹³ Sandra Narayanan, ¹⁴ Ajit S Puri, ¹⁵ Adnan H Siddiqui ⁽¹⁾, ^{16,17} Jenny P Tsai, ¹⁸ Richard P Klucznik¹⁹

UNDOCUMENTED COVID STATUS

Screening for fever and respiratory symptoms should be part of the screening of all potential neurointerventional patients. Intubation of these patients prior to transportation to the angiography suite should be considered, especially in patients with risk factors for intraprocedural intubation as noted above. Given that thrombectomy is such a time-sensitive procedure, that family members are often not available to provide a complete medical history, and that a neurologically impaired patient may not be able to answer screening questions, it is recommended that patients of unknown COVID status be treated as high risk for COVID-positive (see above), provided institutional resources are available.

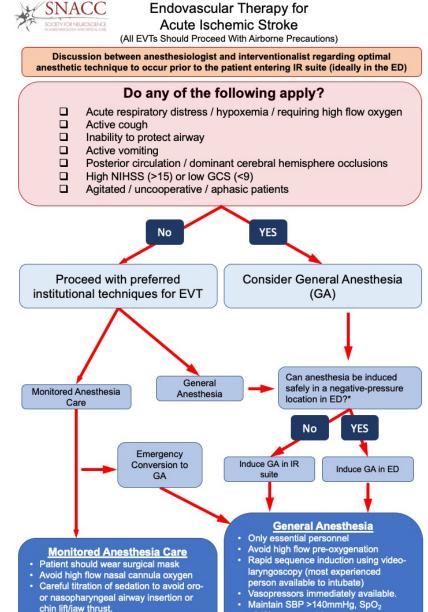
DOCUMENTED COVID-POSITIVE STATUS

Patients with COVID-positive documentation (or those presumed positive; see below) should be treated with maximum safety precautions. Intubation, extubation, suction, and active CPR may result in aerosolization of respiratory secretions, increasing the risk of exposure to personnel. Intubated patients pose less of a transmission risk to neurointerventional staff given that their ventilation is managed through a closed circuit. Nonetheless, disruption of the circuit (such as for a cuff leak, suctioning, endotracheal tube manipulation) can release additional aerosolized secretions. Therefore, we recommend standard institutional protocols with a low threshold for intubation of stroke thrombectomy COVID-19-positive patients prior to transport to the angiography suite, ideally in a negative pressure environment. For instance, patients with dominant hemisphere occlusions, very high National Institutes of Health Stroke Scale score or a low Glasgow Coma Scale score, or posterior circulation occlusions (as well as any patient with significant symptomatic respiratory difficulty) should be considered for prophylactic intubation as

SNACC Consensus Statement:

Anesthetic Management of Endovascular Treatment of Acute Ischemic Stroke During COVID-19 Pandemic: Consensus Statement from Society for Neuroscience in Anesthesiology & Critical Care (SNACC)

Endorsed by Society of Vascular & Interventional Neurology (SVIN), Society for NeuroInterventional Surgery (SNIS), Neurocritical Care Society (NCS), and European Society of Minimally Invasive Neurological Therapy (ESMINT) and American Association of Neurological Surgeons (AANS) and Congress of Neurological Surgeons (CNS) Cerebrovascular Section


Deepak Sharma, MD, DM¹ Mads Rasmussen, MD, PhD² Ruquan Han, MD, PhD³ Matthew Whalin, MD, PhD⁴ Melinda Davis, BMed, FANZCA₅ Andrew Kofke, MD MBA FCCM FNCS⁶ Lakshmikumar Venkatraghvan MD⁷ Radoslav Raychev MD, FAHA⁸ Justin F. Fraser, MD, FAANS, FAHA⁹

The threshold for tracheal intubation will need to be altered by the situation presented and is likely to be impacted by availability of equipment and personnel In general, the threshold for the use of GA for EVT may be reduced during COVID-19 pandemic. If the anesthesiologist has any concerns for possible urgent conversion from MAC to GA during EVT, it is advisable to start with GA. However, not all patients undergoing EVT need to be intubated solely for the purpose of reducing the risk to healthcare personnel. In fact, intubation may increase the risk of aerosolization and hence, the exposure.

My Suggestions:

Do any of the following apply?

- Acute respiratory distress / hypoxemia / requiring high flow oxygen
- Active cough
- Inability to protect airway
- Active vomiting
- Posterior circulation / dominant cerebral hemisphere occlusions
- High NIHSS (>15) or low GCS (<9)
- Agitated / uncooperative / aphasic patients

>94%, normocarbia
HEPA filter on ETT and CO₂ sampling

- line
- Avoid circuit disconnections
 Extubate preferably in a negative
- pressure location avoiding coughing

*It is recognized that patients in acute respiratory distress / hypoxemia may require emergent intubation in ED. Patients suffering from AIS while already in hospital and requiring GA for EVT should be intubated safely is a suitable negative pressure location while minimizing delays in reperfusion.

Consider use of expiratory viral filter on

oxygen masks.

Should Ischemic Stroke Patients with Aphasia or High National Institutes of Health Stroke Scale Score Undergo Preprocedural Intubation and Endovascular Treatment?

Ameer E. Hassan, DO,*† Malik M. Adil, MD,* Haralabos Zacharatos, DO,* Basit Rahim, MD,* Saqib A. Chaudhry, MD,* Wondwossen G. Tekle, MD,*† and Adnan I. Qureshi, MD*

Abstract

BACKGROUND: Presence of aphasia or severe neurologic deficits is considered an indication for preprocedural intubation (PPI) for endovascular treatment (ET) in acute ischemic stroke patients. We determined the feasibility, technical success rates, and outcomes of ET without PPI in 2 groups of patients: those with aphasia and those with an admission NIHSS score of 20 or more.

METHODS: The rates of intraprocedural intubation (IPI), good functional outcome at discharge (modified Rankin Scale score of 0-2), mortality, and intracerebral hemorrhage (ICH) were compared between those who did or did not undergo PPI in the above-mentioned patient groups.

RESULTS: A total of 60 (50%) of 120 patients with aphasia underwent ET without PPI; 6 of 60 patients required IPI. The odds of any ICH (odds ratio [OR] 6.3) and in-hospital mortality (OR 9.3) were significantly higher in those undergoing PPI. In the second analysis, 36 (39%) of 93 patients with an NIHSS score of 20 or more underwent ET without PPI; 6 of 57 patients required IPI. The risk of any ICH (OR 7.6) and in-hospital mortality (OR 5.0) was higher among patients who underwent PPI. The rates of good outcome at discharge were significantly lower among patients with aphasia (OR .1, 95% confidence interval [CI] .04-.2) or those with an NIHSS score of 20 or more (OR .07, 95% CI .005-.9) with PPI compared with those without PPI.

CONCLUSIONS: Despite the risk of IPI, patients with aphasia or an admission NIHSS score of 20 or more who underwent ET with PPI had lower rates of good outcomes and higher rates of ICH and death.

Aphasia (n=60): 10% (n=6) Conversions to GA NIHSS ≥20 (n=36): ? Conversions Rate Good outcomes at discharge lower with GA (OR .07, P=0.04) Good outcome at discharge only 1 of 6 patients who converted

Agitated Confusional States in Patients With Right Hemisphere Infarctions

JAMES W. SCHMIDLEY, M.D., AND ROBERT O. MESSING, M.D.

SUMMARY Patients with infarctions in the territory of the right middle cerebral artery (RMCA) sometimes present with an agitated confusional state. We reviewed clinical data on 46 patients with RMCA infarcts and compared neurologic findings in patients with and without agitated confusion. Neither of the two patients presenting with agitated confusion showed obvious localizing neurologic signs; subtle motor, visual field and sensory deficits referable to the infarcted regions were present, but difficult to elicit because of the mental state. In contrast, all but one of the patients without agitated confusion had prominent motor and sensory signs. Infarction of the RMCA territory may cause agitated confusion in patients without prominent localizing signs; the initial neurologic findings may suggest a metabolic encephalopathy. However, the possibility of a cerebrovascular cause should not be dismissed in confused and agitated patients who have no definite lateralizing signs.

Stroke Oct 15, No 5, 1984

Downloaded from http://ahajournals.org by on May 7, 2020

PATIENTS WITH INFARCTIONS in the territory of the right middle cerebral artery (RMCA) may present with an agitated confusional state and a paucity of lateralized deficits.¹ We have encountered two such patients in three years. A detailed description of this syndrome has been published only once,¹ and we were unable to find any information concerning the frequency of this presentation among patients with RMCA infarctions. We therefore undertook this study to ascertain how common this presentation was, and to determine whether there were any clinical features distinguishing those patients presenting with agitated confusion from other patients with RMCA territory infarctions.

Methods

We reviewed the records of patients with RMCA strokes who were seen by the Neurology Services of San Francisco General and University of California, Moffitt Hospitals, between July 1, 1979 and June 30, 1982. Patients with coma, metabolic derangement, septicemia, preexisting dementia, or other conditions capable of causing an abormal mental state were excluded from consideration, as were those with frank intracerebral hemorrhage on computed tomographic (CT) scan, and those whose CT scan and examination indicated lacunar infarction.² During the period of the study, a CT scan was a standard part of the investigation of all patients with unexplained confusion.

Forty-six patients fulfilled these criteria. Orientation and level of consciousness were recorded in all cases. An agitated confusional state was defined by the presence of disorientation, distractibility, agitation, impaired cognition and perceptual errors (illusions, delusions or hallucinations). CT scans confirmed the presence of cerebral cortical infarction in 35 patients. Of the remaining 11 patients, four had only deep cerebral infarctions on CT scan and seven showed no lesion on CT scan (in six of these seven, CT scans were done within 24 hours of onset of neurologic symptoms). All 11, however, had sensory deficits suggesting parietal cortical infarction, such as agraphesthesia, astereognosis, extinction to double simultaneous stimulation, impaired sensory localization, unilateral neglect, and anosagnosia. They were therefore included in the study. Two patients with infarctions in the right internal carotid artery (RICA) distribution were grouped with RMCA stroke patients.

Results

The two patients who presented with an agitated confusional state are described briefly. Both were seen

From the Department of Neurology, School of Medicine, University of California, San Francisco, California 94143

Address correspondence to: Dr. James Schmidley, Department of Neurology, School of Medicine, University of California, San Francisco, California 94143

Received November 21, 1983: accepted February 22, 1984.

Grady Memorial Hospital 2010 to 2/18/2020

ALL patients: 2127

- MAC: 1651
- GA: 476
- Converted: 26 (1.22%)

Anterior circulation: 1849

- MAC: 1499
- GA:350
- Converted: 22

Posterior circulation 278

- MAC: 152
- GA: 126
- Converted: 4

Anterior Circulation stroke

- Left sided lesion: 1003
- MAC: 788
- GA: 215
- Converted: 10

All NIHSS > 6 and anterior circulation : 1728

- MAC 1393
- GA: 335
- Converted: 19 (1.36%)

Left side lesion and NIHSS > 6: 935

- MAC: 734
- GA:201
- Converted: 7 (0.95%)

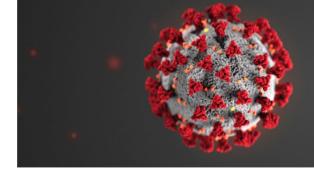
Anterior circulation with NIHSS > 15: 1058

- MAC: 801
- GA: 257
- Converted: 10 (1.24%)

Left sided with NIHSS > 15 :669

- MAC: 498
- GA:171
- Converted: 4 (0.80%)

Grady Memorial Hospital 2010 to 2/18/2020


Predictor	Odds Ratio	95% CI	р	AUC	95% CI
Age	0.99	0.97 - 1.02	0.56	0.46	0.34 - 0.57
BMI (continuous)	0.99	0.94 - 1.06	0.93	0.48	0.35 - 0.61
BMI (>30)	1.10	0.46 - 2.64	0.84	-	-
NIHSS (continuous)	0.96	0.90 - 1.02	0.18	0.42	0.29 - 0.55
NIHSS (>15)	0.62	0.28 - 1.36	0.23	-	-
Echo EF	1.004	0.98 - 1.03	0.77	0.53	0.42 - 0.64
Location					
Right vs Left	1.48	0.62 - 3.53	0.38	-	-
Basilar vs Left	2.73	0.90 - 8.27	0.08	-	-

The summary is that only 19 of 1,393 patients (1.36%) with anterior circulation strokes and NIHSS >=6 were converted from MAC to GA.

Neither left-sided occlusion or NIHSS >15 seem to be reasonable predictors for conversion.

In fact, not even their combination seems to mean much.

Anesthesia Management for MT:

• Patient-Centric: Workflow, Times, Drop in Blood Pressure

 Consider that intubation will often be expected to be done at the a negative pressure room in the ED which will increase the risks to the ED personnel and overload them even more.... Similarly, for extubation will expose ICU personnel and take ICU resources.

Do you best to avoid conversions but stick with what you know best...

Angiography Room Post Treatment Care

SEPA United States Environmental Protection Agency

Environmental Topics Laws & Regulations About EPA

Pesticide Registration

Search EPA.gov Q

Other COVID-19 Resources

CDC's Cleaning and Disinfection Recommendations

EPA's Coronavirus Site

for COVID-19

CDC's Coronavirus Disease 2019 Site

NPIC 's COVID-19 Virus Factsheet

List N: Disinfectants for Use Against SARS-CoV-2

All products on this list meet EPA's criteria for use against SARS-CoV-2, the virus that causes COVID-19.

Finding a Product

The easiest way to find a product on this list is to enter **the first two sets** of its **EPA registration number** into the search bar below.

For example, if EPA Reg. No. 12345-12 is on List N, you can buy EPA Reg. No. 12345-12-2567 and know you're getting an equivalent product. You can find this number by looking for the EPA Reg. No. on the product label.

Using Other Products

If you can't find a product on this list to use against SARS-CoV-2, look at a different product's label to confirm it has an EPA registration number and that human coronavirus is listed as a target pathogen.

Follow the Label

When using an EPA-registered disinfectant, follow the label directions for safe, effective use. Make sure to follow the contact time, which is the amount of time the surface should be visibly wet, listed in the table below.

These products are for use on surfaces, not humans.

Additional Resources

- Still have questions? See our FAQs about this list.
- My company has a product it would like included on this list.

Note: Inclusion on this list does not constitute an endorsement by EPA. Additional disinfectants may meet the criteria for use against SARS-CoV-2. EPA will update this list with additional products as needed.

List N was last updated on April 16, 2020.

earch the Table	Show 25 \$ entries	Export to PDF	Export to CS

List N: Products with Emerging Viral Pathogens AND Human Coronavirus claims for use against SARS-CoV-2

EPA Registration Number ↔	Active Ingredient(s) ↔	Product ↔ Name	Company 🕀	Follow the disinfection directions and preparation \oplus for the following virus	Contact Time (in minutes	Formulation Type ⊕ €	Surface Types for Use €	Use Site € ↔	Emerging Viral Pathogen _¥ Claim? Đ	Date Added ⊕ to List N
Search	Search	super s	Search	Search	Search	Search	Search	Search	Search	Search
9480-4	Quaternary ammonium; Isopropanol	Super Sani- Cloth Germicidal Disposable Wipe	Professional Disposables International Inc	Rhinovirus 39; Adenovirus	2	Wipe	Hard nonporous	Healthcare; Institutional	Yes	03/19/2020

Tru-D°SmartUVC

UVC DISINFECTION

IUVA Fact Sheet on COVID-19

POSTED BY TRU-D SMARTUVC 03.27.20

Today, the International Ultraviolet Association (IUVA) released an important document regarding UV Disinfection for COVID-19.

Currently, there is no published literature on this particular strain of the coronavirus and UVC efficacy.

Reviewing Our Objectives

- COVID-19: Neurological Manifestations and Stroke
 - WHO Concept of Infodemic's
 - Data on Neurological Diseases and Stroke
 - Potential Mechanisms for Stroke
 - Neurotropism
 - Clotting Disorder
- A More Definite Problem: The COVID-19 Collateral Damage on the Non-COVID-19 Stroke Care
- Rationale for Standard Protection
 - Asymptomatic Patients
 - Pre-symptomatic Spread
- Anesthesia: A Change is just Different not Necessary Better...
 - Understanding the Pre-COVID data: Multicentric Non-Anesthesia Trials vs Monocentric Anesthesia Trials – Stick with what you do well...
 - ? Predictors of MAC to GA Conversion
 - Best practices
- Post-treatment Care Now :)

When neurointerventionists take a selfie...

When neurointerventionists take a selfie...

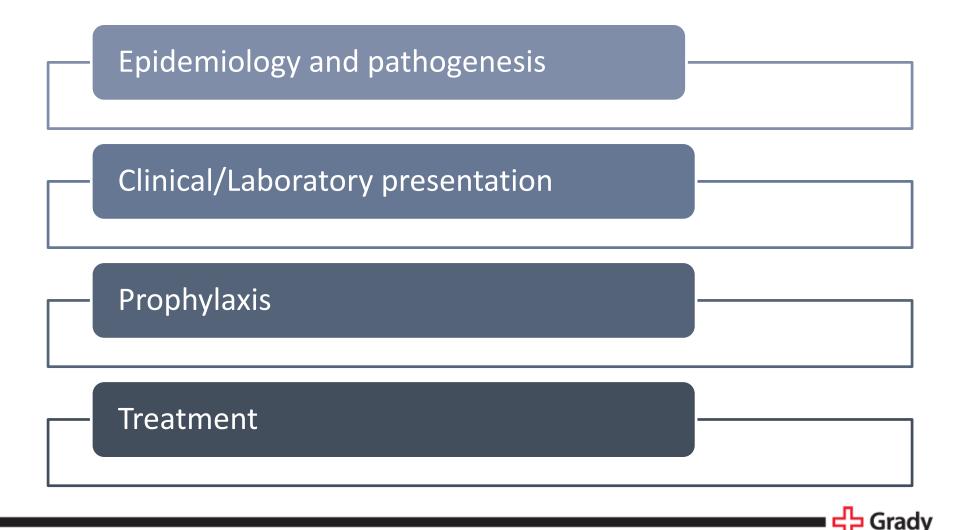
COVID-19 Associated Coagulation Disorders

Katleen W. Chester, PharmD, BCCCP, BCGP Olivia J. Morgan, PharmD, BCCCP, BCGP Marcus Stroke & Neuroscience Center Grady Health System

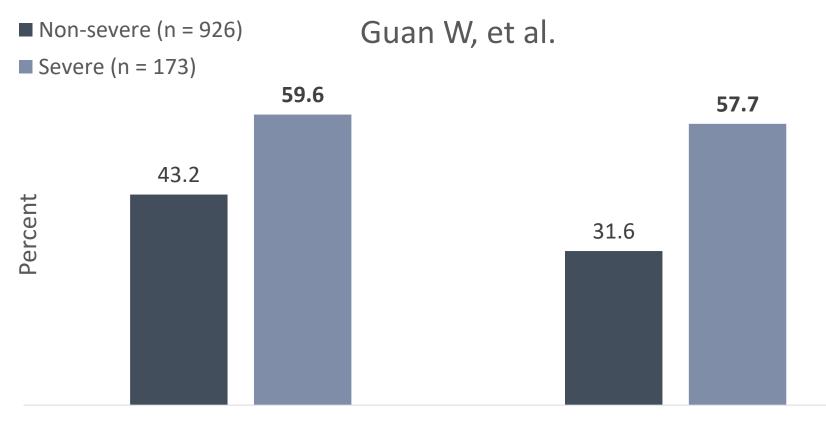
The opinions expressed during this webinar are those of the speaker and do not necessarily reflect the opinions, recommendations or guidance of American Heart Association. For more information about AHA, visit heart.org.

Disclosure Statement

The following individuals have nothing to disclose concerning possible financial or personal relationships with commercial entities (or their competitors) that may be referenced in this presentation:


- Katleen W. Chester, PharmD, BCCCP, BCGP

– Olivia J. Morgan, PharmD, BCCCP, BCGP


The opinions expressed during this webinar are those of the speaker and do not necessarily reflect the opinions, recommendations or guidance of American Heart Association. For more information about AHA, visit heart.org.

COVID-19 Associated Coagulopathy (CAC) Presentation Outline

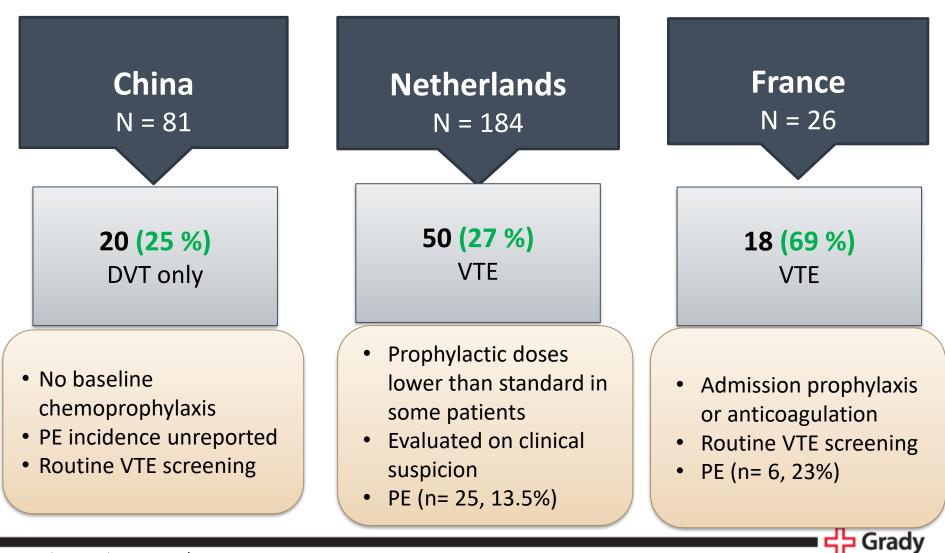
CACD = COVID-19 Associated Coagulation Disorder

Earliest Report of Coagulopathy

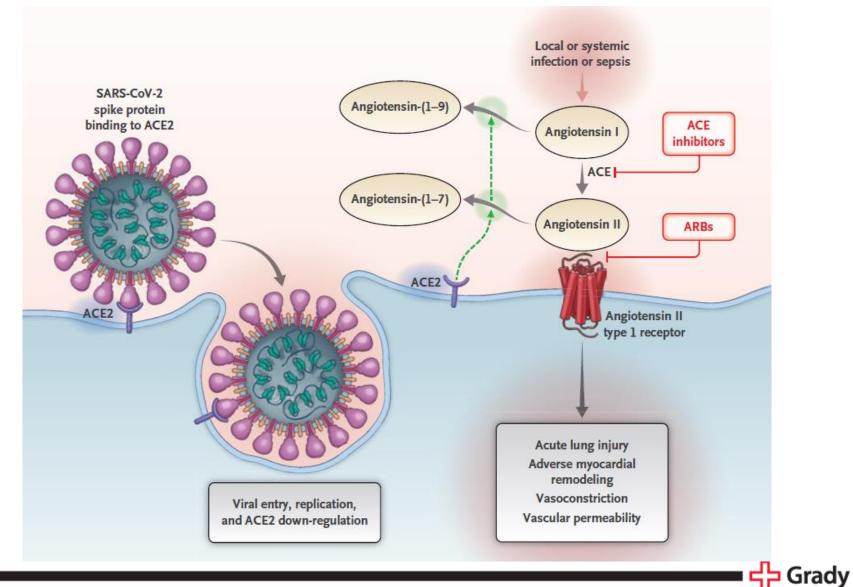
D-dimer >= 500

Platelets < 150,000/mm3

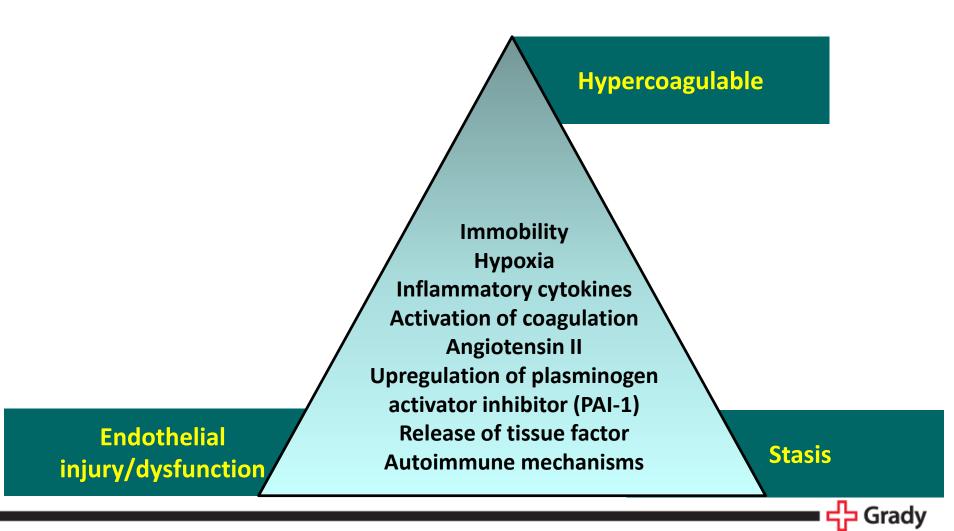
Grady


Elevations in D-Dimer and reductions in platelet count in majority with severe infection

Guan W, et al. NEJM. 2020. DOI: 10.1056/NEJMoa2002032 Kollias A, et al. Br J Haematol. 2020. DOI: 10.1111/bjh.16727



Severe COVID-19 and VTE


F.A. Klok, et al., Thrombosis Research, https://doi.org/10.1016/j.thromres.2020.04.013

Pathogenesis

Vaduganathan M, et al. NEJM. 2020. DOI: 10.1056/NEJMsr2005760 Physiol Rev 98: 505–553. 2018

Mechanisms of Thrombosis

Laboratory Findings

Abnormalities

- Lymphopenia
- 个 CRP
- 个 Ferritin
- 个 FDP
- 个 aPTT
- Fibrinogen
- Thrombocytopenia
- **↑** D-dimer
- 🛧 PT
- 个 IL-6

Disease Severity

- D-Dimer*
- Thrombocytopenia
- PT
- IL-6

Mortality

- D-Dimer*
- Thrombocytopenia

Grady

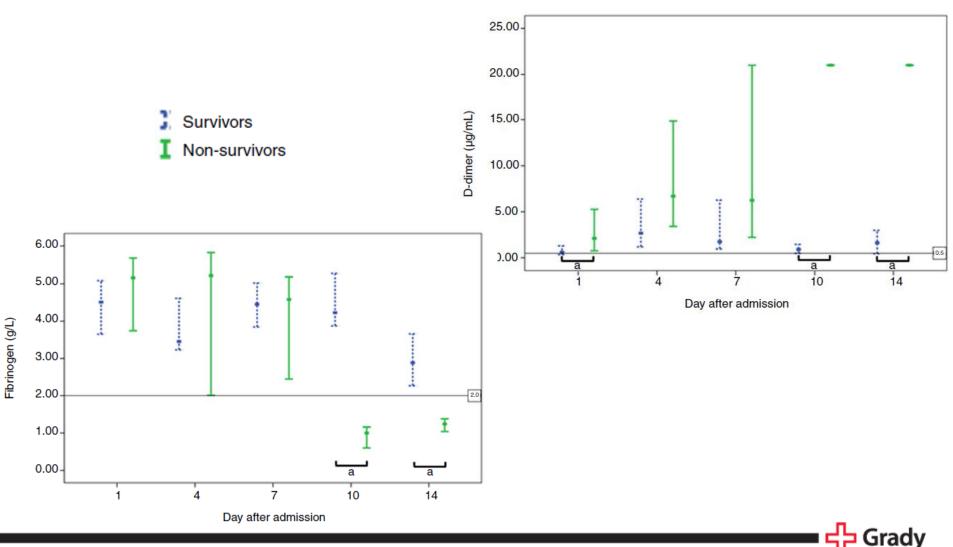
• PT

D- dimer most strongly and consistently associated with disease severity and mortality.

Ciu et al. 2020. doi: 10.1111/JTH.14830

Bikdeli B, et al. 2020. https://doi.org/10.1016/j.jacc.2020.04.031; Cohoon et al. 2020. doi: 10.1002/rth2.12358.

Laboratory Findings


	Non-survivor (n = 54)	Survivor (n = 137)	P value
Prothrombin Time (PT) > 16s	7 (13%)	4/128 (3 %)	< 0.0001
D-Dimer > 1000 ng/mL	44 (81 %)	28/118 (24 %)	< 0.0001

	Non-survivor (n = 54)	Survivor (n = 137)	P value
Platelets < 100 x 10 ⁹ /L	11 (20%)	2 (1 %)	< 0.0001
Platelets count, x 10 ⁹ /L	165.5 (107 – 229)	220 (168 – 271)	< 0.0001

Zhou F, et al. Lancet. 2020. DOI:<u>https://doi.org/10.1016/S0140-6736(20)30566-3</u> Tang N, et al. J Thromb Haemost. 2020. 18:844-847

Laboratory Findings D-Dimer and Fibrinogen

Comparison of CAC with SIC and DIC

ltem	Score	SIC Range	DIC Range
Platelet count (-10 ⁹ /L)	2	< 100	< 50
	1	100 to < 150	50 - 99
FDP / D-Dimer	3	-	Strong increase
	2	-	Moderate increase
PT Prolongation	2	> 1.4	≥ 6 s
(INR for SIC)	1	> 1.2 to 1.4	3 to 6 s
Fibrinogen (g/mL)	1	-	< 100
SOFA score	2	≥ 2	-
	1	1	-
Total score for DIC or SIC		≥ 4	≥ 5

CAC = COVID associated coagulopathy

FDP = fibrin degradation products

DIC = disseminated intravascular coagulopathy

SIC = sepsis induced coagulopathy

🕂 Grady

Zhou F, et al. Lancet. 2020. DOI: https://doi.org/10.1016/S0140-6736(20)30566-3

Tang N, et al. J Thromb Haemost. 2020. 18:844-847

Connors JM, Levy JH. [published online ahead of print, 2020 Apr 27]. *Blood*. 2020;blood.2020006000. doi:10.1182/blood.2020006000

Comparison of CAC with SIC and DIC

ltem	Score	SIC Range	DIC Range	CAC Findings
Platelet count (-10 ⁹ /L)	2	< 100	< 50	100 - 200
	1	100 to < 150	50 - 99	
FDP / D-Dimer	3	-	Strong increase	D-dimer elevated
	2	-	Moderate increase	(>2000-3000)
PT prolongation	2	> 1.4	≥ 6 s	Prolonged 3 - 6 s
(INR for SIC)	1	> 1.2 to 1.4	3 to 6 s	days 10, 14
Fibrinogen (g/mL)	1	-	< 100	Normal-elevated: typically > 100
SOFA score	2	≥ 2	-	
	1	1	-	
Total score for DIC or SIC		≥ 4	≥ 5	

CAC may mimic DIC, but atypical of SIC

- Less prominent thrombocytopenia
- Less consumption of coagulation factors
- Normal or increased fibrinogen

CAC = COVID associated coagulopathy

- FDP = fibrin degradation products
- DIC = disseminated intravascular coagulopathy
- SIC = sepsis induced coagulopathy

Zhou F, et al. Lancet. 2020. DOI: https://doi.org/10.1016/S0140-6736(20)30566-3

Tang N, et al. J Thromb Haemost. 2020. 18:844-847

Connors JM, Levy JH. [published online ahead of print, 2020 Apr 27]. *Blood*. 2020;blood.2020006000. doi:10.1182/blood.2020006000

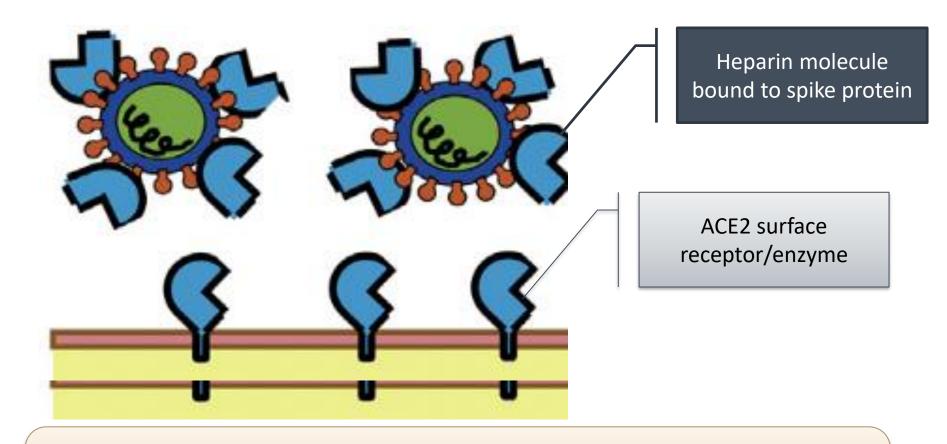
CACD Laboratory Monitoring

Non-critically ill patients

- Daily CBC
- D-dimer

Critically-ill patients

- Daily CBC
- DIC panel
- [Bi-weekly MOCHA panel and PAI-1]

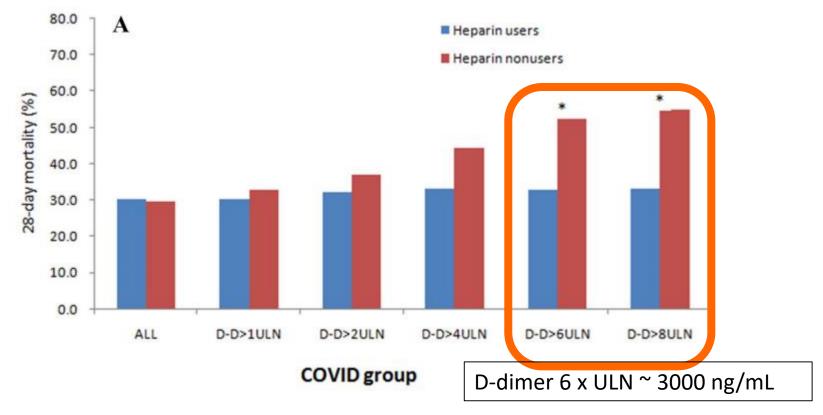

Markers of inflammation

• Consider IL-6 if significant change in clinical condition

DIC panel: PT, aPTT, fibrinogen, d-dimer; PAI-1: Plasminogen activator inhibitor-1 MOCHA: Markers of Coagulation and Hemostasis Activation Panel (Fibrinogen Activity, Prothrombin Fragment 1+2, Thrombin/Antithrombin Complex)

https://www.hematology.org/covid-19/covid-19-and-coagulopathy</u>. Accessed may 4, 2020. Thachil J. J Thromb Haemost. 2020.

Heparin and SARS-CoV 2



Heparin reduces proinflammatory proteins such as IL-6

Grady

Image adapted from: Monteil et al. Cell.2020. <u>https://doi.org/10.1016/j.cell.2020.04.004</u> Mycroft-West et al. 2020. <u>https://doi.org/10.1101/2020.02.29.971093</u>; Cohoon et al. 2020. doi: 10.1002/rth2.12358.

Heparin and Mortality

Grady

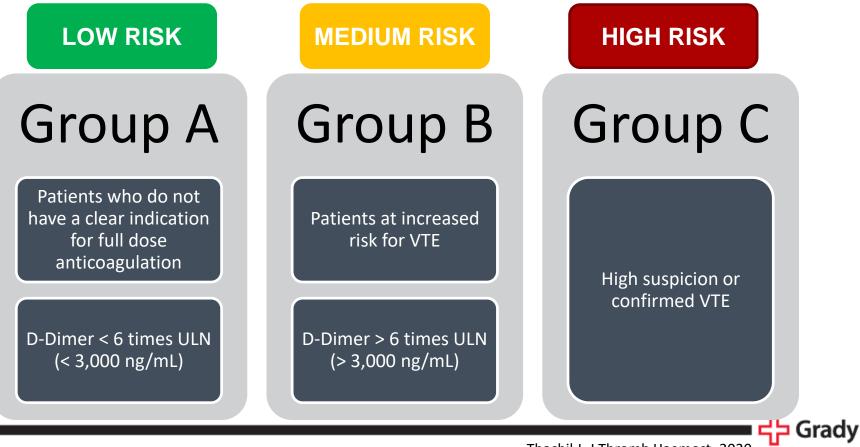
Heparin or LMWH mostly in prophylactic doses

Yin, S et al. J Thromb Thrombolyisis. 2020. doi: 10.1007/s11239-020-02105-8.

Management Strategies for CACD

Quick identification of patients at increased risk for thromboembolism

Prompt initiation of VTE prophylaxis and frequent laboratory monitoring


Escalation of prophylactic intensity in patients with more severe coagulopathy

Escalation of anticoagulation in patients with suspected VTE

CACD Patient Stratification

All patients should receive anticoagulation unless contraindicated

Thachil J. J Thromb Haemost. 2020. GHS Hematology

Group A: Prophylactic Anticoagulation

LMWH should be considered as first line agents in the absence of contraindications:

- Active bleeding
- Platelet count < 25 x 10 ⁹/L
- Severe renal impairment
- Invasive procedures within 12 hours

Enoxaparin doses up to 0.5 mg/kg SQ day may be considered

- On average, patients will requires enoxaparin doses between 30 50 mg SQ daily
- Patients who cannot receive LMWH may get UFH 5000 units SQ 8 12 hours or SCDs

Routine VTE prophylaxis guidance in stroke patients should be observed

LMWH: Low Molecular Weight Heparin, UFH: Unfractionated Heparin, SCD: Sequential Compression Device

Thachil J. J Thromb Haemost. 2020. GHS Hematology; Bikdeli B. J Am Coll Cardiol. 2020

Grady

Group B: Intermediate Anticoagulation

Elevation in d-dimer levels is a common finding in patients with COVID-19, and may correlate with detection of VTE

• Does not currently warrant routine investigation for acute VTE in absence of clinical manifestations or other supporting information

Clinicians are considering intermediate-dose anticoagulation in patients with d-dimer > 6 times ULN (> 3,000 ng/L)

Enoxaparin 1 mg/kg/day SQ to target Anti-Xa levels 0.3 - 0.5

- Anti-Xa levels should be checked 4 hrs after 3rd dose; recheck after 3rd dose with every dose change, or with significant change in clinical status
- Low intensity UFH infusions targeting similar anti-xa levels should be considered in patients unable to receive LMWH

Thachil J. J Thromb Haemost. 2020. GHS Hematology; Bikdeli B. J Am Coll Cardiol. 2020

Group C: Therapeutic Anticoagulation

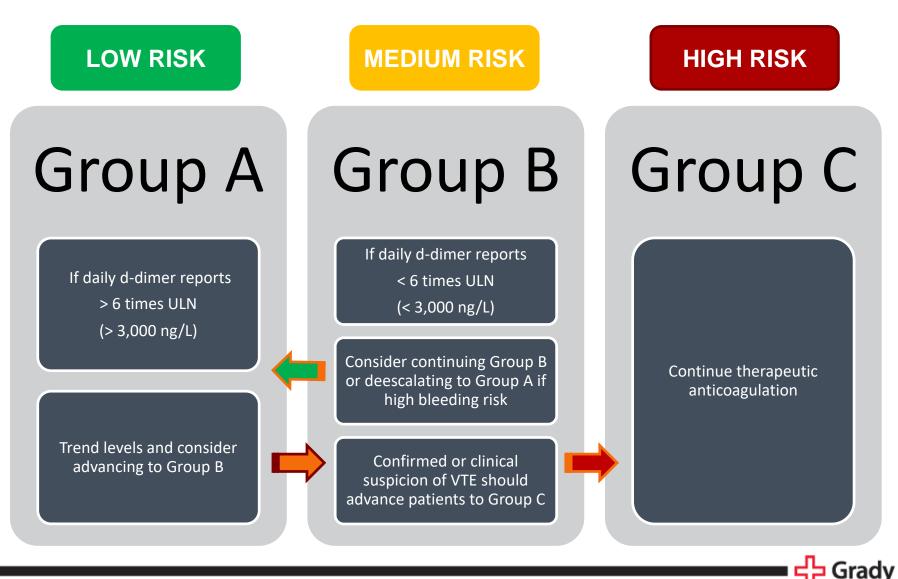
Patients with confirmed or suspected VTE

Enoxaparin 1 mg/kg SQ Q12 hours should be considered first line to achieve Anti-Xa goal of 0.6 - 1

• High intensity UFH infusions targeting similar anti-xa levels should be considered in patients unable to receive LMWH

Heparin resistance has been reported due to reduced anti-thrombin levels and other procoagulant factors

- Failure to achieve goal Anti-Xa levels despite adequate doses (UFH > 35,000 units/ 24 hrs or LMWH > 300-500units/kg/ day) should prompt ordering an anti-thrombin level and hematology consult
- May warrant use of direct thrombin inhibitor (DTI) while inpatient and DOAC upon discharge


Patients with COVID-19 and an alternative indication for anticoagulation (atrial fibrillation, mechanical heart valve) should be converted to LMWH or UFH in the acute setting

LMWH: Low Molecular Weight Heparin, UFH: Unfractionated Heparin DOAC: Direct Oral Anticoagulant GHS

Thachil J. J Thromb Haemost. 2020. GHS Hematology; Bikdeli B. J Am Coll Cardiol. 2020

Transitioning Between Treatment Groups

Thachil J. J Thromb Haemost. 2020. Bikdeli B. J Am Coll

COVID-19 Associated Coagulopathy (CAC)

LMWH prophylaxis may decrease thrombin generation

• Long acting antiplatelet therapies should be discontinued unless benefit outweighs risk

There is no evidence that correction of laboratory parameters with blood products will improve outcomes

In a patient with CAC who is *actively* bleeding:

- Transfuse platelets if the platelet count is less than 50 x 10⁹/L
- Fresh frozen plasma if the INR is above 1.8
- Order fibrinogen concentrate or cryoprecipitate if the fibrinogen level is less than 1.5 g/L

The hemostatic effectiveness of tranexamic acid (TXA) is unknown in this setting and is not recommended

Anticoagulant Dosing Considerations

Obesity

- Group A
 - Enoxaparin 0.5 mg/kg SQ daily (Max: 80 mg SQ daily)
 - UFH SQ every 8 hours should be considered
- Group B and C
 - Consider enoxaparin 0.8 mg/kg/day to avoid supratherapeutic antixa levels

Pregnancy

- Concomitant hypercoagulable state
- Can contribute to elevated d-dimers
- Utilize clinical judgment when escalating anticoagulation
- LMWH is the drug of choice
- DOAC therapy has not been formally evaluated

Heparin Induced Thrombocytopenia (HIT)

- Consider fondaparinux for prophylactic and full anticoagulation
 - Requires adjustments for weight and renal impairment
- Alternatively, direct thrombin inhibitors can be considered
- Consider hematology consult

Tissue Plasminogen Activator (t-PA)

Proposed as a salvage treatment for COVID-19 patients with decompensating respiratory function when mechanical ventilation or extracorporeal membrane oxygenation (ECMO) is not available

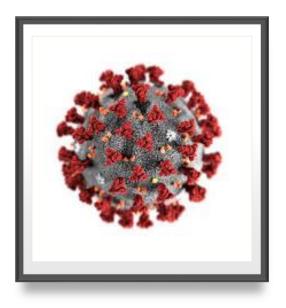
Currently, there is limited clinical experience and no clinical trial data to promote routine use in COVID patients with acute respiratory distress syndrome (ARDS)

Discharge Considerations

Extended prophylaxis with LMWH or direct oral anticoagulants (DOACs) can reduce the risk of VTE

• Limited data supports use of anticoagulation at discharge in all patients admitted for COVID-19, but optimal duration is unknown

Patients with confirmed VTE should receive a minimum of 3 months of therapeutic anticoagulation


Decision to use thromboprophylaxis at discharge should consider the individual patient's VTE risk factors

- Financial feasibility, compliance, laboratory monitoring, drug interactions, bleeding risk, immobility
- VKA or aspirin therapy can be considered in patients not appropriate for LMWH or DOAC therapy

LMWH: Low Molecular Weight Heparin, VTE: Venous Thromboembolism VKA: Vitamin K Antagonist GH:

GHS Hematology; Bikdeli B. J Am Coll Cardiol. 2020.

Grady

With COVID-19, what we do today may be history tomorrow. We must continuously learn as we treat patients with this disease

Select Resources

- American Heart Association/American Stroke Association
- International Society of Thrombosis and Hemostasis
- American Society of Hematology
- Journal of the American College of Cardiology
- National Blood Clot Alliance
- American Society of Health-System Pharmacists

QUESTIONS?

Katleen W. Chester, PharmD, BCCCP, BCGP Kwyatt@gmh.edu Olivia J. Morgan, PharmD, BCCCP, BCGP ojohnson1@gmh.edu Marcus Stroke & Neuroscience Center Grady Health System

Grady

On behalf of the American Heart Association/American Stroke Association, thank you.

The views expressed in this webinar do not necessarily reflect the official policy or position of the American Heart Association, American Stroke Association, or the Institutions of the Speakers. For more information about COVID-19 please visit <u>https://professional.heart.org/COVID-19</u> or engage with us via social media using the hashtag #AHACovid19

The opinions expressed during this webinar are those of the speaker and do not necessarily reflect the opinions, recommendations or guidance of American Heart Association. For more information about AHA, visit heart.org.