Heart Failure Awareness Week

Lunch & Learn Monday, February 14th, 2022 Preventing Heart Failure Among the Expanding Population of Older Adults

Preventing HF Among the Expanding Population Of Older Adults

Daniel E. Forman, M.D.

Professor of Medicine, University of Pittsburgh

Chair, Section of Geriatric Cardiology, Divisions of Geriatrics and Cardiology, University of Pittsburgh Medical Center Director of Translational Research, Geriatric Research, Education, and Clinical Center, VA Pittsburgh Healthcare System Associate Director for Clinical Translation and Director of Emerging Therapeutics, Aging Institute, University of Pittsburgh Director, Transitional Care (Cardiac Rehabilitation, GeroFit, C-TraC, COMPASS), VA Pittsburgh Healthcare System

No disclosures

• As the population is getting older, the concept of risk factors for heart failure is undergoing changes

Average US Life Expectancy at Birth US Trends in Life Expectancy at Birth (1970-2020)

Year of Birth

↑ CVD with Aging

NHANES III

↑ CVD with Age: Driven by Biological Changes

Primary hallmarks Causes of damage

Antagonistic hallmarks Responses to damage

Integrative hallmarks Culprits of the phenotype

López-Otín C, et al. Cell. 2013;153:1194-217

López-Otín C, et al. Cell. 2013;153:1194-217

Age: CVD with Cumulative Disease and Vulnerability

Lakatta EG, J Mol Cell Cardiol. 2015;83:1-13

Age: CVD with Cumulative Disease and Vulnerability

Lakatta EG, J Mol Cell Cardiol. 2015;83:1-13

Age: CVD with Cumulative Disease and Vulnerability

Lakatta EG, J Mol Cell Cardiol. 2015;83:1-13

CVD risks and typical aging...

CVD Risk: Drivers of Frailty and CVD Overlap

Environment

Ijaz N, et al. J Am Coll Cardiol. 2022;79:482-503

Sarcopenia: Skeletal Muscle Weakening and Atrophy

Maria Fiatarone Singh

Inflammation

- 个infiltrating adipose
- \downarrow type 2 fibers
- \downarrow Microvascular perfusion
- ↑ Mitochondrial dysfunction
- **^**Apoptosis
- 个Motor neuron loss

Distinctive Age-Related Vulnerabilities to HF Pathophysiology

Pandey A...Kitzman DW. J Am Coll Cardiol. 2021;78:1166-87

Modifying Risk Factors to Incident HF

- Traditional CVD risk factors:
 - $-\downarrow$ Hypertension
 - -↓Cholesterol
 - $-\downarrow$ Sedentariness
- New Risk factors
 - -Caloric Restriction
 - -Caloric Restriction Mimetics

Systolic Blood Pressure Intervention Trial (SPRINT) : Lower is better...

Composite of MI, ACS, stroke, HF, or death from cardiovascular causes

Sprint Research Group. N Engl J Med. 2015;373:2103-16

Strategy of Blood Pressure Intervention in the Elderly Hypertensive Patients (STEP)

• 60-80 yo • N=8511

olmesartan, amlodipine, and HCTZ
BP systolic target: 110-130 mmHg

1^o Outcome:

Composite of stroke, acute coronary syndrome (MI and UA), acute decompensated heart failure, coronary revascularization, atrial fibrillation, or CVD death

HF declines 28%

Zhang W, et al. N Engl J Med 2021;385:1268-79

Increased adverse events

Bress AP, et al. Circulation. 2017;135:1617-28

Data combined from Jupiter and HOPE-3:

 Adults ≥70 years: 26% relative risk reduction for the endpoint nonfatal MI, nonfatal stroke, or CV death

Ridker PM, et al. Circulation 2017; 135:1979-81

New Statin Use in US Veterans Over Age 75

	Crude rate/1000 person-years		Weighted incidence rate		
Outcome	Statin user (N = 57 178)	Statin nonuser (N = 269 803)	difference/1000 person-years (95% CI) ^a	HR (95% CI)	<i>P</i> value
Primary outcomes					
All-cause mortality (n = 206 902)	78.7	98.2	-19.45 (-20.38 to -18.52)	0.75 (0.74 to 0.76)	<.001
All CV death (n = 53 296)	22.6	25.7	-3.09 (-3.63 to -2.55)	0.80 (0.78 to 0.81)	<.001
Secondary outcomes					
ASCVD composite (n = 123 379) ^b	66.3	70.4	-4.05 (-5.09 to -3.02)	0.92 (0.91 to 0.94)	<.001

N=57,178, Mean age 81.4 yrs

Orkaby AR, et al. JAMA. 2020;324:68-78

	No. of events/No. at risk		Weighted incidence rate difference/1000		Favors statin	Favors statin
Outcome	Statin user	Statin nonuser	person-years (95% CI)	HR (95% CI)	continuation	discontinuation
Atherosclerotic carc	liovascular disease co	mposite				
Sex						
Men	21111/55622	99098/318244	-4.20 (-5.25 to -3.15)	0.92 (0.91-0.94)	+	
Women	593/1556	2584/8737	1.49 (-4.57 to 7.56)	0.99 (0.90-1.08)		
Race						
White	18961/51570	88680/296617	-3.63 (-4.69 to -2.56)	0.93 (0.91-0.94)	+	
Black	2341/4530	11320/24641	-10.88 (-15.49 to -6.27)	0.89 (0.85-0.93)		
Other	402/1078	1567/4645	1.44 (-5.62 to 8.51)	0.97 (0.86-1.08)		
Age group, y						
75-79	9161/24092	50538/163178	-2.95 (-4.31 to -1.59)	0.92 (0.90-0.95)	+	
80-84	9279/24295	36084/115062	-4.94 (-6.68 to -3.20)	0.93 (0.90-0.95)	-	
85-89	2901/7826	12269/40186	-3.40 (-7.16 to 0.36)	0.96 (0.92-1.00)		
≥90	363/965	2791/8555	-12.99 (-26.36 to 0.39)	0.90 (0.80-1.01)		-
				0.0	5 0.8	L 1.2 1
					HR (95% (CI)

N=57,178, Mean age 81.4 yrs

Orkaby AR, et al. JAMA. 2020;324:68-78

DM and HF: More than glucose control

Kenny HC, Abel ED. Circ Res. 2019;124:121-141

Age-Specific Shifts in CVD Risk Factors

A CVD events

Wang T, et al. Lancet Regional Health September 26, 2021 DOI:https://doi.org/10.1016/j.lanwpc.2021.100277

The style Risk Factors in Older Adults Adults

- Physical Activity
- Caloric Restriction
- Caloric Restriction Mimetics
 - -Rapamycin
 - Resveratrol
 - -Metformin
 - Canakinumab

Physical Activity and Heart Failure

Aune D, e al. European Journal of Epidemiology (2021) 36:367–381

Exercise as Medicine

	Mitochondrial	Skeletal Muscle	Cardiac Muscle	Conduit Arteries
	CEERCE			Endothelial cell
Sedentary	 ↑ mitochondrial DNA deletions and mutations⁷¹ Electron transport chain abnormalities⁷² ↑ mitochondrial fission⁷³ ↓ mitochondrial content⁷⁴ ↓ respiration⁴ 	 ↑ IL-6 and CRP⁸⁰ Activation of proteolytic systems⁸¹ Inactivation of the PI3K/Akt/mTOR pathway⁸² ↓ lean muscle mass⁸³ Greater proportion of hybrid fibers possibly due to dysregulation in MHC isoform expression⁸⁴ 	 ↑ AGE accumulation indicative of collagen cross-linking⁸⁷ ↑ Left ventricular stiffness⁸⁸ β-adrenergic receptor desensitization resulting in impaired inotropic and chronotropic responses to adrenergic stimulation^{89, 90} ↓ SERCA2a contributes to prolonged calcium transients⁹¹ 	 ↓ sympathetic baroreflex sensitivity and ↑ sympathetic activation⁹⁴ ↑ NOS uncoupling, ↓ NO bioavailability, thereby ↑ oxidative stress⁹⁴ Extracellular matrix remodeling through elastin degradation by MMPs and formation of AGEs⁹⁵ Endothelial dysfunction⁹⁶
Physical Activity	 ↑ mitochondrial protein turnover through degradation of damaged proteins and de novo synthesis of new functional proteins⁷⁵ ↑ expression of PGC-1α^{76, 77} ↑ SIRT3 content⁷⁸ ↑ mitochondrial volume⁷⁹ 	 ↑ metabolic enzymes profile: citrate synthase, β-HAD, glycogen phosphorylase⁸⁵ ↓ catabolic mRNA expression (FOXO3a, MuRF-1, Atrogin-1, myostatin)⁸⁶ ↑ capillary-to-fiber ratio⁸⁵ ↑ insulin sensitivity⁷⁶ 	 ↑ SERCA2a mRNA & protein expression⁹² ↑ phosphorylation of threonine-17 residue of phospholamban allowing for faster reuptake of cytoplasmic calcium⁹² ↑ contractility and relaxation due to faster systolic rise and diastolic decay time of calcium⁹³ ↓ Left ventricular stiffness⁸⁸ 	 Lower expression of the transcription factor p53 which is associated with senescence compared to sedentary counterparts⁹⁷ Lower markers of senescence (p21 and p16)⁹⁷ ↓ expression of nitrotyrosine and NADPH oxidase (prooxidant)⁹⁶ ↑ expression of manganese SOD (antioxidant)⁹⁶

North BJ, Sinclair DA. Circ Res. 2012;110:1097-108

North BJ, Sinclair DA. Circ Res. 2012;110:1097-108

Time (Allostatic Load)

L Rodríguez-Mañas. J Gerontol A Biol Sci Med Sci. 2013;68:62–7

Targeting Aging with Metformin (TAME)

Metformin

 Most widely prescribed oral medication for type 2 DM worldwide

Barzilai N, Cell Metab. 2016;23:1060-5

Summary

- The rapidly growing population of older adults is intrinsically vulnerable to incident CVD
- Traditional risk factors have sustained and even increased benefit to moderate risks of HF amidst high susceptibility to CVD
- Novel risk factors associated with aging are now being recognized and provide new targets for risk modification

Heart Failure Awareness Week

Lunch & Learn Monday, February 14th, 2022 Prevention and Early Detection of Heart Failure Patients

Heart Failure Awareness Week!

- Welcome!
- Daily Newsletters via email
- Lunch & Learns Monday Friday 12om CST/ 1pm EST
- Join <u>HFSA</u> and other heart failure-focused organizations on Twitter at 11:00 AM CT on **Wednesday**, **February 17** for a lively discussion on heart failure. The purpose of the chat is to provide healthcare providers and heart failure patients with an overview on the status of heart failure and to discuss ways to improve quality of care and expand heart failure awareness. **Follow hashtag #HFChat2022**
- Recordings
- Slides & Attachments
- Submit questions through the question panel

Prevention and Early Detection of Heart Failure Patients

Jennifer Maning, DO

Heart Failure Burden

Chart 22-3. Prevalence of heart failure among US adults \geq 20 years of age, by sex and age (NHANES, 2015–2018).

NHANES indicates National Health and Nutrition Examination Survey. Source: Unpublished National Heart, Lung, and Blood Institute tabulation using NHANES.³¹

³¹Centers for Disease Control and Prevention, National Center for Health Statistics. National Health and Nutrition Examination Survey (NHANES) public use data files. Accessed April 15, 2021.

Prevalence of HF is projected to increase by 46% from 2012 to 2030, affecting >8 million people 18 years of age or older

Heart Failure Risk Factors

Data from NHANES show that one-third of US adults have at least 1 HF risk factor

Tsao CW et al; American Heart Association Council on Epidemiology and Prevention Statistics Committee and Stroke Statistics Subcommittee. Heart Disease and Stroke Statistics-2022 Update: A Report From the American Heart Association. Circulation. 2022 Jan 26:CIR000000000000001052

Sex Differences in Risk Factors

 Hypertension is the most common risk factor in women while coronary artery disease is the most common risk factor among men

Daubert MA, Douglas PS. Primary Prevention of Heart Failure in Women. JACC Heart Fail. 2019 Mar;7(3):181-191.

Hypertension

 Long term treatment of hypertension reduces the risk of HF by ~50% and is associated with lower HF mortality

Most effective anti-hypertensive medication classes in reducing the incidence of HF

Sciarretta S et al. Antihypertensive treatment and development of heart failure in hypertension: a Bayesian network meta-analysis of studies in patients with hypertension and high cardiovascular risk. Arch Intern Med. 2011 Mar 14;171(5):384-94

Diabetes

 For patients with diabetes, <u>SGLT2 inhibitors</u> have been shown to reduce incident heart failure (*even without a history of a prior MI or ASCVD)

Verma S, McMurray JJV. The Serendipitous Story of SGLT2 Inhibitors in Heart Failure. Circulation. 2019 May 28;139(22):2537-2541

Velagaleti RS, Massaro J, Vasan RS, Robins SJ, Kannel WB, Levy D. Relations of lipid concentrations to heart failure incidence: the Framingham Heart Study. Circulation. 2009 Dec 8;120(23):2345-51

Smoking

Tobacco use dependence is a

without a history of a prior MI or ASCVD but with multiple risk factors,

For former smokers, the risk of HF is comparable to that of never smokers after >15 years of tobacco cessation American Heart Association.

How Can I Quit Smoking?

Smoking harms almost every tissue and organ in the body, including your heart and blood vessels. Nicotine, one of the main chemicals in cigarettes, causes your heart to beat faster and your blood pressure to rise. Carbon monoxide from smoking also gets into the blood and robs your body of oxygen. Nonsmokers who are exposed to secondhand smoke are also harmed.

If you smoke or vape, you have good reason to worry about its effect on your health and the health of your loved ones and others.

Deciding to quit is a big step. Following through is just as important. Quitting tobacco and nicotine addiction isn't easy, but others have done it, and you can, too.

Lifestule + Risk Reduction

Smokina

ANSWERS

bu heart

Arnett DK et al. 2019 ACC/AHA Guideline on the Primary Prevention of Cardiovascular Disease: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Circulation. 2019 Sep 10;140(11):e596-e646

Physical activity

Meta-analysis of 10 cohort studies comprised of **282,889** patients who were followed for up to <u>30 years</u>, RR for HF among patients with regular exercise pattern was 28% lower (RR: 0.72; 95% CI: 0.67 to 0.79)

First author (Year of publication)	Country	Sample size			R	elative risk	95% CI	Weight
He et al, 2001 ¹⁴	USA	13643	_			0.77	(0.62 - 0.96)	7.5%
Kenchaich et al, 2009 ¹⁹	USA	21094				0.73	(0.59 - 0.90)	7.7%
Hu et al, 2010 ²⁴	Finland -Women	30336	-	\vdash		0.68	(0.59 - 0.78)	10.8%
Hu et al, 2010 ²⁴	Finland-Men	28842	-			0.69	(0.60 - 0.79)	10.9%
Kraigher-Krainer et al, 2013 ¹⁷	USA	1142				0.65	(0.46 - 0.92)	4.2%
Patel et al, 2013 15	USA	5503	-			0.79	(0.64 - 0.98)	7.8%
Bell et al, 2013 ¹⁸	USA-African-Americans	3707		+		0.59	(0.47 - 0.74)	7.2%
Bell et al, 2013 ¹⁸	USA-Caucasians	10018	-#	-		0.64	(0.54 - 0.76)	9.5%
Saevereid et al, 2014 ¹⁶	Denmark	18209				0.91	(0.77 - 1.08)	9.6%
Andersen et al. 2014 ²⁰	Sweden	39805				0.90	(0.76 - 1.07)	9.5%
Rahman et al, 2014 ²¹	USA	27895	-			0.73	(0.65 - 0.82)	12.1%
Young et al, 2014 ²³	USA	82695	-			0.48	(0.32 - 0.72)	3.3%
Random effects model			•			0.72	(0.67 - 0.79)	100%
Heterogeneity: I-squared=56.3%, ta	u-squared=0.0109, p=0.003	87	· · · · ·					
			0.5	1.0	2.0			
		Deleting side 9 050/ and idea internal						

Relative risk & 95% confidence interval

Figure 2. Meta-analysis of effect estimates from studies of the association of physical activity with incident heart failure. Forest plot showing the overall estimate of the association of physical activity and heart failure. CI indicates confidence interval.

Echouffo-Tcheugui JB, Butler J, Yancy CW, Fonarow GC. Association of Physical Activity or Fitness With Incident Heart Failure: A Systematic Review and Meta-Analysis. Circ Heart Fail. 2015 Sep;8(5):853-61

Key Preventative Strategy

 Promote a <u>healthy</u> <u>lifestyle</u> throughout life

Horwich TB, Fonarow GC. Prevention of Heart Failure. JAMA Cardiol. 2017 Jan 1;2(1):116

Social Determinants of Health

Table 2. Example Considerations for Addressing Social Determinants of Health to Help Prevent ASCVD Events

Topic/Domain	Example Considerations				
Cardiovascular risk	Adults should be routinely assessed for psychosocial stressors and provided with appropriate counseling. 52.1-31				
	Health literacy should be assessed every 4 to 6 y to maximize recommendation effectiveness. ^{52,1-36}				
Diet	In addition to the prescription of diet modifications, body size perception, as well as social and cultural influences, should be assessed. ^{52.1-37,52.1-38}				
	Potential barriers to adhering to a heart-healthy diet should be assessed, including food access and economic factors; these factors may be particularly relevant to persons from vulnerable populations, such as individuals residing in either inner-city or rural environments, those at socioeconomic disadvantage, and those of advanced age*. ^{52,1-39}				
Exercise and physical activity	In addition to the prescription of exercise, neighborhood environment and access to facilities for physical activity should be assessed. 52.1-30.52.1-40.52.1-41				
Obesity and weight loss	Lifestyle counseling for weight loss should include assessment of and interventional recommendations for psychosocial stressors, sleep hygiene, and other individualized barriers. ^{52,1-42–52,1-44}				
	Weight maintenance should be promoted in patients with overweight/obesity who are unable to achieve recommended weight loss.				
Diabetes mellitus	In addition to the prescription of type 2 diabetes mellitus interventions, environmental and psychosocial factors, including depression, stress, self-efficacy, and social support, should be assessed to improve achievement of glycemic control and adherence to treatment. ^{52,1-45-52,1-48}				
High blood pressure	Short sleep duration (<6 h) and poor-quality sleep are associated with high blood pressure and should be considered. ^{52,1-4} Because other lifestyle habits can impact blood pressure, access to a healthy, low-sodium diet and viable exercise options should also be considered.				
Tobacco treatment	Social support is another potential determinant of tobacco use. Therefore, in adults who use tobacco, assistance and arrangement for individualized and group social support counseling are recommended. ^{52,1-50,52,1-51}				

Arnett DK et al. 2019 ACC/AHA Guideline on the Primary Prevention of Cardiovascular Disease: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Circulation. 2019 Sep 10;140(11):e596-e646

Detecting Heart Failure: symptoms and/or signs

Detecting Heart Failure

Diagnostic tools ٠

.Ò-proBNP _omplete blood Diagnostic imagin, count Chest x-ray Basic metabolic panel Liver function tests Iron studies Thyroid function Tests Hemoel A1c nd panel Electrocardiogram **Right heart catheterization** Endomyocardial biopsy

Transthoracic echocardiogram Coronary angiogram Cardiac MRI

Murphy SP, Ibrahim NE, Januzzi JL Jr. Heart Failure With Reduced Ejection Fraction: A Review. JAMA. 2020 Aug 4;324(5):488-504

Disparities in Detection of Heart Failure

Critical disparities in diagnosis of HF: female sex, black race, and low net worth were associated with higher rates of diagnosis in the acute care setting

Sandhu AT, Tisdale RL, Rodriguez F, Stafford RS, Maron DJ, Hernandez-Boussard T, Lewis E, Heidenreich PA. Disparity in the Setting of Incident Heart Failure Diagnosis. Circ Heart Fail. 2021 Aug;14(8):e008538

THANK YOU!

For questions or more information: please contact your local AHA Quality Improvement Manager OR reach out via the below link: <u>https://www.heart.org/en/professional/quality</u> <u>-improvement/contact-your-local-get-with-</u> <u>the-guidelines-representative</u>

Registration for tomorrow's Lunch & Learn on Health Equity in Heart Failure can be completed by clicking <u>here</u>.

