

Diagnosis of Patient with Ischemic Stroke -Localization in Stroke and The NIH Stroke Scale

Harold P. Adams, Jr., M.D. Division of Cerebrovascular Diseases Department of Neurology Carver College of Medicine University of Iowa

• No Disclosures

• Explain latest updates and options for Ischemic and Hemorrhagic stroke management and standards of care.

Measuring Neurological Impairments

o Goals

- Assess baseline severity of stroke
- Affects prognosis and decisions for treatment
- Assess for improvement or worsening of the patient's neurological status
- NIH Stroke Scale most commonly used instrument
- Developed by researchers at University of Cincinnati, University of Iowa, and NINDS

Localization in Stroke

- Acute onset of focal neurologic signs
- Reflects area of brain injury
- Stereotypic patterns of impairment
- Important prognostic information
- Suggests cause of ischemic stroke

Components of the Neurological Exam

- Mental status
- Station and gait
- o Motor
- Sensory
- Coordination
- Reflexes
- Cranial nerves

Assessment of Mental Status

- Wakefulness is a vital sign first component of neurological examination
- Alert, drowsy, stupor, coma, delirium
- Cognition usually assessed at same time
- Orientation, attention, language, memory, and fund of knowledge
- Assessed in history as well as formal testing

Rules of Thumb Wakefulness/Cognition

- Decreased wakefulness brain lesion
 - Diffuse brain dysfunction (delirium)
 - Focal brainstem lesion
 - Focal cerebral lesion/secondary brainstem involvement
- Decreased cognition despite normal wakefulness
 - Focal dysfunction of cerebral cortex focal impairments of non-dominant/dominant hemispheres
 - Multiple aspects of cortex dementia

Coma

- Examination to differentiate a structural cause (stroke) from global cause (hypoxia)
- Limited by the patient's status
- Focuses on the brain stem
 - Vital signs especially breathing pattern
 - Pupils size, equality, reactivity
 - Eye movements location at rest, conjugate, response to stimulation
 - Corneal and gag reflexes
 - Motor responses normal, weak, decorticate, decerebrate, no movement – responses to stimulation

Difference Between Speech and Language

- Aphasia disorder of language
 - Aural comprehension, oral production
 - Fluency, naming, repetition, understanding
 - Reading, writing
 - o Lesions of dominant cerebral hemisphere
- Dysarthria disorder of articulation
 - Production of spoken language
 - Involves larynx, throat, tongue, palate, lips
 - Wide variety of lesions brainstem, muscle diseases

Motor Examination

UNIVERSITY OF IOWA HEALTH CARE

- Atrophy, contracture, fasciculations
- Strength (power) and tone
- Flaccidity, spasticity, rigidity
- Involuntary movements
- Tremor, chorea, athetosis, dystonia
- Slowness of movements

Patterns of Motor Weakness

- Quadriparesis involvement of all 4 limbs
 - Upper spinal cord, brain stem or bilateral cerebral hemispheres – brain lesions usually have facial involvement
- Paraparesis involvement of both legs with arms normal
 - Spinal cord lesions
- Hemiparesis involvement of one half body
 - o Brain stem or cerebral hemisphere lesions
 - Contralateral to site of lesion
- Monoparesis involvement of only one limb
 - Wide variety of locations

Sensory Examination

- Components of somatosensory examination
 - Pain, temperature, position, vibration
 - Brain, spinal cord, root, plexus, nerve
 - Sensory loss, hyperesthesia
- Patterns reflect the location of the lesion
- Dissociated sensory loss some modalities preserved/others impaired
 - Peripheral nerve, spinal cord, brainstem lesions

Lesions in the Dominant Cerebral Cortex

- Usually, the left hemisphere
- Signs vary by location and size of lesion
- Contralateral hemiparesis (UMN)
- Contralateral hemi-sensory loss
- Contralateral visual field loss (homonymous hemianopia)
- Aphasia
- Apraxia, acalculia, alexia
- Mild dysarthria

Lesions in the Non-Dominant Cerebral Cortex

- Signs vary by location and size of lesion
- Contralateral hemiparesis (UMN)
- Contralateral hemi-sensory loss
- Contralateral visual loss (homonymous hemianopia)
- Neglect
- Anosognosia, asomatognosia, aprosody
- Mild dysarthria

Lesions Deep in the Cerebral Hemisphere

- Basal ganglia, internal capsule, thalamus
- Signs vary by location and size of the lesion
- Contralateral hemiparesis (UMN)
- Contralateral hemi-sensory loss
- May have paralysis without sensory loss or vice versa
- o **Dysarthria**
- May have cognitive impairments though usually mild

Visual Fields

Disorders of Ocular Movements

- May involve hemisphere (supranuclear control,) brainstem, cerebellum, nerves, NMJ, muscle
- Lesions of CNS usually produce other signs too
- Isolated cranial nerve palsy (III) usually peripheral nerve
- Disturbances eyes at rest (conjugate, deviation) movement of one or both eyes
- May have associated nystagmus, pupillary changes, or ptosis

Brainstem Lesions

- Most commonly, stroke, tumor, MS
- Ipsilateral cranial nerve palsies
 - o III midbrain, VI, VII-pons, V, X, XII-medulla
- Contralateral motor or sensory loss
 - Motor impairments with midline lesions
 - May have bilateral motor impairments with large lesions
 - Sensory impairments with dorsolateral lesions

Take Home Points

- Impairment in wakefulness brain disease
 - Global brain dysfunction
 - Brain stem dysfunction
 - Cerebral hemisphere dysfunction with secondary brain stem involvement
- Impairment in cognition cerebral cortex disease
 - Occur with diffuse or focal disease
 - Cognitive impairments of focal lesions of the dominant cerebral hemisphere differ from those found with lesions in the non-dominant hemisphere

Take Home Points

- Depending the pattern of visual loss dysfunction can be with lesions of the eye, optic nerve, optic chiasm, optic tract, or cerebral hemisphere
- Depending upon the nature and type of cranial nerve palsies – dysfunction is ipsilateral with lesions of the brain stem or the peripheral cranial nerve
- The patterns of cerebellar dysfunction vary by location – may be ipsilateral cerebellar hemisphere, vermis or pan-cerebellar
- Motor impairments generally are categorized as upper or lower motor neuron

Take Home Points

- Lower motor neuron signs are found with lesions of the spinal cord, motor neuron, nerve root, plexus or peripheral nerve
 - Findings correspond to the anatomic structure involved
- Upper motor neuron signs are found with lesions affecting the corticospinal tract – cerebral hemisphere, brain stem, spinal cord.
 - Depending upon location or severity of lesion, the patterns of weakness are hemiparesis, paraparesis, or quadriparesis.

National Institutes of Health Stroke Scale

- 15 items of the neurological examination
- Each item independently scored
- Give a baseline severity of neurological impairments
- Could be used sequentially to monitor for worsening or improvement
- Range of scores o 42
- Higher scores more severe stroke

Components of the NIH Stroke Scale

Component

Consciousness Orientation Commands Best gaze Visual fields Facial motor function Upper limb function (R/L) Lower limb function (R/L) Limb ataxia Language Articulation Extinction

Scoring range

- 0 3 points
- 0 2 points
- 0 2 points
- 0-3 points
- 0 3 points
- 0-3 points
- 0 4 (8) points
- 0 4 (8) points
- 0-2 points
- 0-3 points
- 0 2 points
- 0-2 points

Brott et al, Stroke, 1989; 20: 864

- Level of consciousness
 - o o alert
 - o 1 drowsy
 - o 2 stupor
 - o 3 coma
- Questions
 - o answers both correctly
 - o 1 answers 1 correctly
 - 2 answers both incorrectly

Commands

- o **o Performs both correctly**
- **1** Performs **1** correctly
- 2 Performs neither correctly
- Best gaze
 - o **o Looks both directions**
 - o **1** Partial gaze palsy
 - 2 Forced deviation

Visual Fields

- o Full visual fields
- o 1 Partial hemianopia
- o 2 Complete hemianopia
- 3 Bilateral visual loss
- Facial Palsy
 - o No facial weakness
 - o 1 Partial facial palsy
 - o **2 Complete facial palsy**

- Motor arm
- Right and left scored independently
 - o No drift or weakness
 - o 1 Drift, but holds limb
 - o 2 Cannot maintain holding the arm up
 - 3 No effort against gravity
 - o **4 No movement**

- Motor leg
- Each leg tested independently
 - o No weakness when holding limb up
 - o 1 Drift, but does hold limb up
 - 2 Some effort against gravity
 - o 3 No effort against gravity, but does move limb
 - 4 No movement

- o Limb Ataxia
 - o o Absent
 - 1 Present in one limb
 - 2 Present in two limbs
 - UN joint fusion or absent
- Sensory
 - o **No sensory loss**
 - 1 Mild to moderate sensory loss
 - 2 Severe or total sensory loss

- Best Language
 - o o No aphasia
 - o 1 Mild to moderate aphasia
 - o **2 Severe aphasia**
 - o 3 Mute or global aphasia

Reading and Articulation

- You know how.
- Down to earth.
- I got home from work.
- Near the table in the dining room.
- They heard him speak on the radio last night.

- MAMA
- TIP TOP
- FIFTY FIFTY
- THANKS
- HUCKLEBERRY
- BASEBALL PLAYER
- CATERPILLAR

o Dysarthria

- o o Normal
- o 1 Mild to moderate dysarthria
- o 2 Severe dysarthria
- UN untestable
- Extinction and Inattention
 - o No abnormality
 - 1 Unilateral extinction
 - 2 Profound extinction

Initial Validation NIH Stroke Scale

- Initial testing high inter-rater agreement ($\hat{k} = 0.69$) and test – retest reliability ($\hat{k} = 0.66 - 0.77$)
- Prospectively assessed and total scores were compared to size of infarctions on CT and outcomes at 3 months
 - Acceptable scale validity
 - Scores correlated well with size of lesions and outcomes
- Tested in several other venues
- Now used internationally in wide range of stroke research

Brott et al, Stroke, 1989: 20: 864

Correlation of Stroke Severity with Total score on NIH Stroke Scale

- Total score is important in planning for acute care and prognosis
- Range of scores
 - o-3 mild
 - 4-8 moderate
 - 9−14 mod. severe
 - 15 20 severe
 - 21+ very severe

Prognostic Importance NIH Stroke Scale score

Adams et al, Neurology, 1999; 53: 126

NIVERSITY OF IOWA

HEALTH CARE

Advantages of NIH Stroke Scale

- Well-validated measure of stroke severity that can be performed rapidly by a wide range of health care professionals
- Good correlation with outcomes and used for planning acute and long-term care
- High inter-rater agreement and intra-rater reproducibility
- Adapted for multiple languages and cultures
- Can be administered via telemedicine
- Educational and certification programs exist

Disadvantages of NIH Stroke Scale

- There is a "bias" towards the dominant hemisphere
 - With similarly sized lesions in similar locations, scores are higher with left hemisphere lesions
 - Result of orientation and commands linked to language
- Range of scores among raters
- Moderate-to-excellent agreement in most items with the following exceptions:
 - Ataxia, facial paresis, and aphasia

Increasing Reliability Scoring of NIH Stroke Scale

- Certification process using videotapes
 - Used in clinical trials
- Available at several websites
- Components
 - Education and testing
 - Remediation
- Central adjudication of scores

Albanese et al, Stroke; 1994; 25: 1748 Lyden et al, Stroke; 1994; 25: 2250

Current Status NIH Stroke Scale

- Modifications of NIH Stroke Scale have been attempted but original version remains the standard
- Most widely used clinical assessment scale of stroke severity in research and clinical care
 - Score used as an entry criterion for trials and in the selection of interventions
 - Score is now used in inter-physician communications in a way that is similar to the Glasgow Coma Score in patients with trauma
 - Likely will not be replaced in the near future and all physicians dealing with stroke should become proficient in its use