Cryptogenic Stroke

Cory Edwards, MD
Stroke Medical Director
Neurology
Altru Health System

“The recommendations and opinions presented by our guest speakers may not represent the official position of the American Heart Association. The materials are for educational purposes only, and do not constitute an endorsement or instruction by AHA/ASA. The AHA/ASA does not endorse any product or device.”
Disclosures

• No financial disclosures
Objectives

• Defining cryptogenic stroke

• Investigating cryptogenic strokes

• Treatment of cryptogenic strokes
What is Cryptogenic?

• Stroke of unknown etiology
• Implies appropriate work up
• TOAST Classification
 • Subtypes of ischemic stroke
• Etiology helps determine appropriate secondary prevention strategy
Etiologies

- Large Artery
 - Plaque in the major vessels of head/neck
 - Most commonly carotid bifurcation
 - Vascular RF’s

- Small Vessel
 - Small “penetrating” vessels deep within the brain
 - Vascular RF’s

- Cardioembolic
 - From heart travel down stream.
 - Many potential causes, atrial fib/flutter most common
Small Vessel
Large Vessel
Stroke of Other Determined Etiology
Cardioembolism
Appropriate Stroke Up

• Hx and Physical
 • Trauma, palpitations, prior neuro symptoms, substance abuse, chest pain (dissection, STEMI), neck/head pain (dissection), neck manipulation, radiation therapy

• Labs
 • Lipids, A1C, UDS, troponin, INR/PTT, CBC

• EKG
• Echocardiogram
• Vessel Imaging
• MRI brain
MRI Brain

- Knowing size/location can be helpful
- ~7% of strokes are MRI negative
 - Posterior fossa
- Detect infarcts in multiple vascular territories that may be silent
Vascular Imaging

• Pros/Cons of different modalities
• Carotid Duplex
 • Limited evaluation – carotid bifurcation only
• CTA
 • Head and neck imaging of posterior and anterior circulation
• MRA
 • Head and neck imaging of posterior and anterior circulation
• Need intracranial and extracranial vessel imaging before considering cryptogenic
Cardiac Rhythm Monitoring

- EKG on presentation
 - Irregular rhythms, NSTEMI/STEMI
- Telemetry monitoring while in ER/Hospital
 - Atrial fibrillation/flutter
 - Often paroxysmal and asymptomatic
- Minimum of 24 hours before considering cryptogenic
- Long term rhythm monitoring if suspicious for atrial fibrillation/flutter and/or cryptogenic stroke
 - Holter
 - Zio/MCOT
 - Insertable Loop
- Longer monitoring is more sensitive
 - Optimal duration unknown
 - Pick up for subclinical atrial fibrillation?
- 30% of cryptogenic strokes will end up being a fib related with long term heart monitoring
 - Changes management
ADDITIONAL WORKUP: CARDIAC MONITORING

Conventional Monitoring Strategies

<table>
<thead>
<tr>
<th>TYPE OF MONITORING</th>
<th>SETTING</th>
<th>INVASIVE VS. NONINVASIVE</th>
<th>DURATION</th>
<th>RATE OF DETECTION OF ATRIAL FIBRILLATION, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Admission ECG</td>
<td>Inpatient</td>
<td>Noninvasive</td>
<td>N/A</td>
<td>2.7</td>
</tr>
<tr>
<td>Inpatient continuous telemetry</td>
<td>Inpatient</td>
<td>Noninvasive</td>
<td>3-5 d</td>
<td>5.5-7.6</td>
</tr>
<tr>
<td>Holter monitor</td>
<td>Outpatient</td>
<td>Noninvasive</td>
<td>24 h</td>
<td>3.2-4.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>48 h</td>
<td>6.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>7 d</td>
<td>12.5</td>
</tr>
<tr>
<td>Mobile continuous outpatient telemetry</td>
<td>Outpatient</td>
<td>Noninvasive</td>
<td>21-30 d</td>
<td>16-25</td>
</tr>
<tr>
<td>Implantable loop recorders</td>
<td>Outpatient</td>
<td>Invasive</td>
<td>6 mo</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>36 mo</td>
<td>30</td>
</tr>
</tbody>
</table>

Types of monitoring and detection of paroxysmal atrial fibrillation in patients with cryptogenic stroke.
Echo

- Structural cardiac imaging
- Potential etiologies
 - PFO, LV thrombus, atrial myxoma, papillary fibroelastoma, vegetations, low EF, aortic athero
- TTE vs TEE
 - TEE considered more sensitive/specific
 - 5% chance of finding pathologies that change management
 - TTE with appropriate maneuvers very sensitive for PFO
 - TTE better for LV thrombus
 - TEE preferred if valvular disease suspected
 - TEE better at imaging left atrium/appendage
Potential Cryptogenic Etiologies

- Unidentified arrhythmia
- Aortic atheromatous disease
- Paradoxical emboli from PFO
- Unidentified Thrombophilia
- Hypercoagulability of Malignancy
- Vasculitis
- Cardiac Tumors
ESUS

- Embolic stroke of undetermined source
 - Embolic appearance with negative workup
 - Non lacunar with no embolism source identified
- Subset of cryptogenic stroke
- Large number of trials on this specific diagnosis
PFO

- 15-25% of adult population
 - Likelihood these are coincidental
- Higher rate in patients with cryptogenic stroke
 - 40% of patients with cryptogenic stroke
 - Association
- How does it lead to stroke?
 - “Paradoxical emboli” – most likely
 - Intrinsic thrombus formation
 - Higher rates of atrial arrhythmias
- LE doppler +/- pelvic MRV
PFO cont.

- Evidence for benefit of PFO closure
 - High ROPE score
 - 7 or higher
 - Probable PASCAL
- Consider closure
 - Age 18-60
 - No other source identified
 - Non lacunar
 - At least 30 days of negative cardiac rhythm monitoring
 - High ROPE, Probable PASCAL
 - High risk PFO features
 - Atrial septal aneurysm, shunt size, presence of venous clot

![Diagram of atrial septum and cardiac structures](image)
PFO Treatment

• Options
 • Antiplatelet therapy
 • Anticoagulation
 • More likely to have bleeding event
 • Closure + Antiplatelet therapy
 • Reduces risk of ischemic strokes

• Closure
 • Small risk from procedure
 • Development of atrial fibrillation
 • If not candidate, unsure if antiplatelet or anticoagulation better
TREATMENT OF PFO

RCTs on the efficacy of PFO closure

<table>
<thead>
<tr>
<th>Trial Name</th>
<th>Journal/Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLOSURE I</td>
<td>NEJM, 2012</td>
</tr>
<tr>
<td>PC</td>
<td>NEJM, 2013</td>
</tr>
<tr>
<td>RESPECT</td>
<td>NEJM, 2013</td>
</tr>
<tr>
<td>CLOSE</td>
<td>NEJM, 2017</td>
</tr>
<tr>
<td>REDUCE</td>
<td>NEJM, 2017</td>
</tr>
<tr>
<td>DEFENSE-PFO</td>
<td>JACC, 2018</td>
</tr>
</tbody>
</table>

Decrease in stroke/year (%) with PFO closure: 0.1 to 5.3%

Rate of procedure/device-related adverse events (not including atrial fibrillation): 1 to 3.6%

Appropriate patients:
- Age < 60
- Embolic appearing stroke
- Large shunt
- Other stroke etiologies ruled out
Risk of Paradoxical Embolism (RoPE) score

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Points</th>
<th>RoPE score</th>
</tr>
</thead>
<tbody>
<tr>
<td>No history of hypertension</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>No history of diabetes</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>No history of stroke or TIA</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Nonsmoker</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Cortical infarct on imaging</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Age, years</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18 to 29</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>30 to 39</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>40 to 49</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>50 to 59</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>60 to 69</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>≥70</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

Total score (sum of individual points)

| Maximum score (a patient <30 years with no hypertension, no diabetes, no history of stroke or TIA, nonsmoker, and cortical infarct) | 10 |
| Minimum score (a patient ≥70 years with hypertension, diabetes, prior stroke, current smoker, and no cortical infarct) | 0 |
Proposed flexible clinical practice approach to classifying patent foramen ovale causal association in patients with embolic infarct topography and without other major stroke sources*

<table>
<thead>
<tr>
<th>Risk source</th>
<th>Features</th>
<th>RoPE score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Very high</td>
<td>A PFO and a straddling thrombus</td>
<td>Definite</td>
</tr>
<tr>
<td>High</td>
<td>(1) Concomitant pulmonary embolism or deep venous thrombosis preceding an index infarct combined with either (2a) a PFO and an atrial septal aneurysm or (2b) a large-shunt PFO</td>
<td>Probable</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Highly probable</td>
</tr>
<tr>
<td>Medium</td>
<td>Either (1) a PFO and an atrial septal aneurysm or (2) a large-shunt PFO</td>
<td>Possible</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Probable</td>
</tr>
<tr>
<td>Low</td>
<td>A small-shunt PFO without an atrial septal aneurysm</td>
<td>Unlikely</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Possible</td>
</tr>
</tbody>
</table>
Inherited Stroke Syndromes

- Low yield evaluation
- Consider if stroke family hx, recurrent strokes, lack of traditional RF’s
- Small vessel appearance
- CADASIL, CARASIL, Fabry, MELAS, COL4A1/2
- Cerebral Autosomal Dominant Arteriopathy with subcortical infarcts and Leukoencephalopathy
 - NOTCH3 gene
 - Clues on MRI
 - Personal and/or family hx of migraine with aura, stroke, cognitive deficits...
Hypercoagulable Evaluation

• Genetic or acquired conditions leading to predisposition for clot formation
• Low yield if testing is indiscriminate
 • Certain clues: young age (<60), lack of vascular RF’s, hx of clotting, family hx of clotting, miscarriages
• Testing results in treatment change 1-8% of the time
• Many hypercoagulable states prevent with venous clotting
 • Warranted in cerebral sinus thrombosis and/or unprovoked DVT
 • Protein C/S, AT III, Factor V Leiden and Prothrombin gene mutation, MTHFR mutation
 • Unlikely associated with arterial clotting
• Sickle Cell
Antiphospholipid Antibody Syndrome

- Acquired hypercoagulable state with recurrent clotting and pregnancy complications
- Clearly associated with arterial events
 - 4x increase in risk for stroke
- Diagnosis
 - Lab abnormalities
 - Lupus anticoagulant
 - B2 glycoprotein ab’s
 - Anticardiolipin ab’s
 - Certain conditions temporarily raise these antibodies
 - Especially in acute setting
 - Persistent lab abnormalities (12 weeks apart) + 1 or more clinical thrombotic event
- Management changes.
 - Warfarin
Infectious Etiologies

- Rare but delayed treatment significant consequences
- Embolism from infective endocarditis
- Ischemic lesions, microbleeds, mycotic aneurysms
- TEE more sensitive
CNS Vasculitis

- RARE
- Rheum disorders, Giant cell arteritis, Takayasu disease, eosinophilic granulomatosis, polyarteritis nodosa, infection....
- Can be challenging to diagnose
 - Labs, CSF, vascular imaging (formal angiogram), brain biopsy
- GCA
 - New onset headache, vision changes/loss, scalp tenderness, jaw claudication, fevers/chills
 - Associated with PMR
 - > age 50
 - Low risk of stroke (1.5-7.5%). Predilection for posterior fossa.
 - Elevated inflammatory markers (ESR, CRP)
 - Temporal artery biopsy
 - Prolonged steroid treatment
 - Fast improvement in symptoms
Aortic Atherosclerotic Disease

- Source of systemic emboli
- Increased risk
 - Complex plaque
 - > 4 mm
 - Ulceration
- Involving ascending aorta and arch
 - Some evidence suggest disease of descending aorta can also cause stroke via retrograde flow
- Treatment involves antiplatelet, statins, RF reduction
MRI of Carotid Plaque

- Specific MRI sequences of carotid bifurcation plaque
 - < 50% luminal narrowing
- Looks for features that suggest vulnerability to embolize
 - Histological look at the plaque
 - intraplaque hemorrhage, lipid-rich necrotic core, thinning of the fibrous cap, plaque ulceration
- Does it change management?
 - If confirms atherosclerotic disease, use high intensity statins and antiplatelets
 - Risk factor modification
 - Surgical intervention?
 - Prevents unnecessary testing
- Not readily available
- Insurance coverage
Covid-19

- Increased association with stroke
 - 2.4% overall risk
 - Thrombo inflammation, pro inflammatory state, cardiac dysfunction...
- Within 1-3 weeks of infection
- Pursue traditional stroke evaluation
- Treatment
 - Thrombolytics +/- thrombectomy for appropriate patients
 - Antiplatelet typically indicated
 - Anticoagulation only if other indication
Atrial Cardiopathy

- Structural or functional changes of the atria
- Increased risk for embolism
 - Even in absence of atrial fibrillation
- LA enlargement, elevated proBNP, EKG findings
- Difficult to establish cause/effect
- Biomarkers being study as is response to treatment

How to Treat if Cryptogenic?

• Secondary prevention
 • Antiplatelet therapy
 • Statin therapy
• Lack of benefit from anticoagulation
 • ESUS trials with anticoagulants not clearly beneficial
• Management of vascular risk factors
References

- “Addressing Patients with Cryptogenic Stroke.” Epidemiology, Pathophysiology, Diagnosis and Follow-up for Patients with Unknown Stroke Etiology. American Stroke Association.