

Cardiac Amyloidosis: early diagnosis and novel treatments

Brett W. Sperry, MD @BrettSperryMD Advanced Heart Failure & Transplantation Director, Cardiac Amyloidosis Program Saint Luke's Mid America Heart Institute

MID AMERICA HEART INSTITUTE

Disclosures

- Pfizer grant support, speaker, and consultant
- Alnylam consultant

Objectives

- Review epidemiology and workup of cardiac amyloidosis
- Systemic manifestations
- Common misconceptions
- Examine novel treatment strategies in ATTR amyloidosis

Case

- 70 year old white male
- Symptoms of leg swelling and dyspnea with recent HF admission

2D ECHO MEASUREMENTS		
LV Diastolic Diameter Base LX	5.1 cm	3.6-5.
LV Systolic Diameter Base LX	4.3 cm	2.3-4.
LA Systolic Diameter LX	5.6 cm	2.3-3.
IVS Diastolic Thickness	1.5 cm	0.6-1.
AORTIC VALVE DOPPLER		
AV Peak Velocity	104 cm/s	
AV Peak Gradient	4.3 mmHg	
TRICUSPID VALVE DOPPLER		
RV Systolic Pressure	32.7 mmHg	

ŧ	LVPW Diastolic Thickness	1.4 cm	0.6-1.1
)	LVOT Diameter	2.1 cm	
3	Aorta at Sinuses Diameter	3.4 cm	2.1-3.5
Ē.	Ascending Aorta Diameter	4.2 cm	2.1-3.4
	LVOT AV Vel Ratio	0.71	

What is amyloidosis?

• Protein misfolding disorder

Over 30 Amyloidogenic Proteins

Amyloid protein	Precursor	Distribution	Syndrome
AL	Immunoglobulin light chain	Systemic/localised	Primary/myeloma associated
AH	Immunoglobulin heavy chain	Systemic/localised	Primary/myeloma associated
AA	Serum amyloid A	Systemic	Secondary
Aβ ₂ Microglobulin	β ₂ Microgĺobulin	Systemic	Secondary
ATTR	Transthyretin	Systemic	Senile systemic/familial
AANF	Atrial natriuretic factor	Localised	Atrial isolated
AApoA-I	Apolipoprotein A-I	Localised/systemic	Aortic/familial
AApoA-II	Apolipoprotein A-II	Systemic	Familial
Amed	Lactadherin	Localised	Aortic
Agel	Gelsolin	Systemic	Familial
Alys	Lysozyme	Systemic	Familial
Afib	Fibrinogen α chain	Systemic	Familial
Acys	Cystatin C	Systemic	Familial
Αβ	Aβ Protein precursor	Localised	Alzheimer's disease, aging
AprP	Prion protein	Localised	Spongiform encephalopathies
Abri	ABri protein precursor	Localised	Familial dementia
Acal	(Pro)calcitonin	Localised	Thyroid tumours derived from C cells
AIAPP	Islet amyloid polypeptide	Localised	Langerhans islets, insulinomas
Apro	Prolactin	Localised	Prolactinomas, pituitary in elderly
Ains	Insulin	Localised	latrogenic
Aker	Kerato-epithelin	Localised	Familial, cornea
Alac	Lactoferrin	Localised	Familial, cornea

Proteins involved in the cardiovascular system are in bold.

Normal Patient

Patient with Amyloid Deposits in Heart

Pathology: Diffuse involvement

- Increase in LV mass without dilatation
- Atrial infiltration impairing atrial contraction
- Conduction system / valves
- Microvascular ischemia

Normal heart

Cardiac amyloid

2 Main Types of Systemic Amyloidosis

Which type of amyloidosis is this?AL AmyloidosisATTR Amyloidosis

Why do you need to tell the amyloid subtype?

Different treatments Different prognosis Genetic component

Prognosis and treatment in amyloidosis

J Am Heart Assoc. 2016 Subtype-Specific Prognosis in Cardiac Amyloidosis Sperry et al

2 Types of Amyloid that Affect the Heart

Immunoglobulins i.e. antibodies

Free kappa+lambda light chains

Serum immunofixation

Urine immunofixation

SPEP/UPEP

2 Types of Amyloid that Affect the Heart

Transport protein for thyroxine and retinol

Homotetramer: 4 identical monomers 127 amino acids each > 100 mutations described: single amino acid substitutions

ATTRm = amyloid transthyretin mutant

"Hereditary transthyretin amyloidosis" "Familial amyloid cardiomyopathy (FAC) "Familial amyloid polyneuropathy (FAP) Age of onset different depending upon mutation

Most common mutation V122I seen in 3.5% AA*

Median survival for V122I mutation 2.5 years

*Quarta, NEJM 2015

Variable	AL (n=191)	ATTR (n=169)	P Value
Age, y	64.7±11.0	75.3±8.9	<0.001
Male	116 (61)	136 (81)	<0.001
White	157 (82)	112 (66)	<0.001
Body surface area, m ²	1.92±0.26	2.00±0.24	0.005
Hypertension	90 (47)	108 (64)	0.002
Hyperlipidemia	80 (44)	98 (58)	0.006
Diabetes mellitus	47 (25)	48 (28)	0.472
Smoking	92 (48)	93 (55)	0.197
Atrial fibrillation	65 (34)	93 (55)	<0.001
Anemia	80 (44)	80 (47)	0.525
CAD requiring PCI or CABG	33 (17)	42 (25)	0.091
NYHA class ≥3	122 (64)	104 (61)	0.743
eGFR, mL/min per 1.73 m ²	65.4±26.4	59.9±23.4	0.039
β-Blocker	73 (38)	97 (57)	<0.001
ACEI/ARB	61 (32)	74 (44)	0.022
Antihypertensive	118 (62)	126 (75)	0.013
Diuretic	158 (83)	139 (82)	1.000
Amyloid-specific treatment	135 (71)	44 (26)	<0.001

AL

- Age 40s-70s
- Men = women
- Proteinuria
- Macroglossia, periorbital purpura, petechiae
- Carpal tunnel syndrome
- Orthostatic hypotension!
- GI involvement (diarrhea)

ATTR

- Age 60s-80s
- Men > women
- African Americans (V122I mutation)
- HFpEF
- Low-flow low-gradient AS
- Bilateral carpal tunnel syndrome
- Spinal stenosis
- Peripheral neuropathy (in some variants)

Sperry et al

ATTR Amyloidosis

AL Amyloidosis

Non cardiac manifestations

- Polyneuropathy
 - Small fiber neuropathy most common
 - Carpal tunnel syndrome
- Autonomic neuropathy
 - Hypotension, orthostatic hypotension
 - GI motility issues
- Tendon/ligament issues
 - Carpal tunnel syndrome
 - Biceps tendon rupture
 - Trigger finger
 - Spinal stenosis

Tenosynovial and Cardiac Amyloidosis in Patients Undergoing Carpal Tunnel Release

Brett W. Sperry, MD,^{a,b} Bryan A. Reyes, MD,^c Asad Ikram, MBBS,^a Joseph P. Donnelly, MD,^a Dermot Phelan, MD, PhD,^a Wael A. Jaber, MD,^a David Shapiro, MD,^c Peter J. Evans, MD, PhD,^c Steven Maschke, MD,^c Scott E. Kilpatrick, MD,^d Carmela D. Tan, MD,^d E. Rene Rodriguez, MD,^d Cecilia Monteiro, MD,^e W.H. Wilson Tang, MD,^a Jeffery W. Kelly, PhD,^e William H. Seitz, J_R, MD,^c Mazen Hanna, MD^a

- 98 patients
- 12% of men ≥ 50 and women ≥ 60 years old with bilateral carpal tunnel syndrome undergoing carpal tunnel release had amyloid deposits in the wrist
- 2 had previously unknown cardiac involvement
- 1 had previously unknown hATTR neuropathy (Leu58His)
- 1 had Ala81Thr mutation without cardiac or neuropathic involvement

Tenosynovial and Cardiac Amyloidosis in Patients Undergoing Carpal Tunnel Release

Brett W. Sperry, MD,^{a,b} Bryan A. Reyes, MD,^c Asad Ikram, MBBS,^a Joseph P. Donnelly, MD,^a Dermot Phelan, MD, PHD,^a Wael A. Jaber, MD,^a David Shapiro, MD,^c Peter J. Evans, MD, PHD,^c Steven Maschke, MD,^c Scott E. Kilpatrick, MD,^d Carmela D. Tan, MD,^d E. Rene Rodriguez, MD,^d Cecilia Monteiro, MD,^e W.H. Wilson Tang, MD,^a Jeffery W. Kelly, PHD,^e William H. Seitz, JR, MD,^c Mazen Hanna, MD^a

Non cardiac manifestations

- Renal
 - Proteinuria
 - Nephrotic syndrome
- Gastrointestinal
 - Liver infiltration
 - Autonomic GI neuropathy
 - Direct GI mucosal infiltration

LC/MS = liquid chromatography/mass spectrometry

Red Flags for	Cardiac Amyloidosis		
Echocardiography: Low voltage on ECG and th Thickening of right ventric	nickening of the septum/posterior wall > 1.2 cm le free wall, valves		
Intolerance to beta-blockers or ACE in	hibitors		
Low normal blood pressure in patients	s with a previous history of hypertension		
History of bilateral carpal tunnel synde	rome, often requiring surgery		
AL	ATTR		
HFpEF + nephrotic syndrome	White male age ≥ 60 with HFpEF + history of carpal tunnel syndrome and/or spinal stenosis		
Macroglossia and/or periorbital purpura	African American age ≥ 60 with HFpEF without a history of hypertension		
Orthostatic hypotension	New diagnosis of hypertrophic cardioayopathy in an elderly patient		
Peripheral neuropathy	New diagnosis of low flow, low gradient aertic stenosis in an elderly patient		
MGUS	Family history of ATTRm amyloidosis		

Pseudoinfarct pattern, Low voltage *

Echo – wall thickness

A

2D ECHO MEASUREMENTSLV Diastolic Diameter Bas4.3 cmLVPW Diastolic Thickness1.9 cmLV Systolic Diameter Base3 cmAorta at Sinuses Diameter3.3 cmLA Systolic Diameter LX4.9 cmAscending Aorta Diameter3.2 cmIVS Diastolic Thickness1.8 cm0.6-

B

3.6-5.4 0.6-1.1 2.3-4.0 2.1-3.5 2.3-3.8 2.1-3.4 0.6-1.1 26mm

20mm

= 14.0mm

= 17.9mm

Echo

Apical Sparing Pattern: "Relative strain"

LC/MS = liquid chromatography/mass spectrometry

^{99m}Technetium-Pyrophosphate Imaging for Transthyretin Cardiac Amyloidosis

OVERVIEW The purpose of this document is to identify the critical diagnosis is confirmed by endomyocardial biopsy and typing of amyloid fibrils as needed.

"Bone Scintigraphy enables the diagnosis of ATTR to be made reliably without the need for histology in patients who do not have a monoclonal gammopathy."

EXPERT CONSENSUS RECOMMENDATIONS

EXPERT CONSENSUS RECOMMENDATIONS

ASNC/AHA/ASE/EANM/HFSA/ISA/SCMR/SNMMI EXPERT CONSENSUS RECOMMENDATIONS FOR MULTIMODALITY IMAGING IN CARDIAC AMYLOIDOSIS: PART 1 OF 2—EVIDENCE BASE AND STANDARDIZED METHODS OF IMAGING

ASNC/AHA/ASE/EANM/HFSA/ISA/SCMR/SNMMI EXPERT CONSENSUS RECOMMENDATIONS FOR MULTIMODALITY IMAGING IN CARDIAC AMYLOIDOSIS: PART 2 OF 2—DIAGNOSTIC CRITERIA AND APPROPRIATE UTILIZATION

<u>Perugini score</u>

- 0 absent uptake NEGATIVE
- 1 less than rib INDETERMINATE
- 2 equal to rib LIKELY POSITIVE
- 3 greater than rib POSITIVE

Difference (H/CL 1 hour - H/CL 3 hour) 0 .2

Ņ

LC/MS = liquid chromatography/mass spectrometry

fringence

MUST SUBTYPE THE AMYLOID!! Congo Red only tells you if it is amyloid (What type, AL? TTR?, other?)

- Prognosis
- Treatment

Immunofluorescence

• Rare

- 13% of patients admitted with HFpEF and septal thickness >12mm
- 16% of patients undergoing TAVR (22% of men undergoing TAVR)
- 30% of patients with LFLG AS with EF <50%
- 12% of men ≥ 50 and women ≥ 60 years old with bilateral carpal tunnel syndrome undergoing carpal tunnel release

EHJ (2015) 36, 2585-2594 Castano et al EHJ 2017 Treibel et al Circ Imaging 2016 Sperry et al JACC 2018

- Rare
 - Under-appreciated and under-recognized cause of HFpEF
- Low voltage on ECG is a good screening test

• Rare

- Under-appreciated and under-recognized cause of HFpEF
- Low voltage on ECG is a good screening test
 - Many patients with amyloidosis do not meet low voltage criteria
- Fat pad biopsy has high sensitivity

Diagnostic sensitivity of fat pad fine needle aspiration in different cardiac amyloidoses

Amyloid type	n	Number positive by Congo red staining	Diagnostic sensitivity (CI)
Systemic AL amyloidosis	216	181	84% (78–88%)
ATTRm	113	51	45% (36–54%)
Val122Ile	69	23	33%
Thr60Ala	21	14	67%
ATTRwt	271	42	15% (11–20%)

• Rare

- Under-appreciated and under-recognized cause of HFpEF
- Low voltage on ECG is a good screening test
 - Many patients with amyloidosis do not meet low voltage criteria

• Fat pad biopsy has high sensitivity

• 85% for AL, but only 15% for wild type ATTR

• SPEP is sufficient to exclude AL amyloidosis

- Usually NORMAL
- Cardiac amyloidosis is the great masquerader
- Need an invasive and risky endomyocardial biopsy for diagnosis
 - Not for ATTR. For AL, will need some tissue diagnosis → non cardiac options = bone marrow, fat pad, skin lesion, kidney

• Everyone dies so it is not worth diagnosing

Treatments

• AL amyloidosis

AL Therapeutic Regimens

The New England Journal of Medicine

A TRIAL OF THREE REGIMENS FOR PRIMARY AMYLOIDOSIS: COLCHICINE ALONE, MELPHALAN AND PREDNISONE, AND MELPHALAN, PREDNISONE, AND COLCHICINE

ROBERT A. KYLE, M.D., MORIE A. GERTZ, M.D., PHILIP R. GREIPP, M.D., THOMAS E. WITZIG, M.D., JOHN A. LUST, M.D., PH.D., MARTHA Q. LACY, M.D., AND TERRY M. THERNEAU, PH.D.

AL Amyloidosis Therapeutic Options

	Fibril destabilizers				
Steroids	Proteasome Inhibitors	Immunomodulatory Drugs (IMiDs)	Alkylating Agents	Other	Novel Agents
Prednisone	Bortezomib (Velcade)	Lenalidomide (Revlimid)	Melphalan (oral) (Alkeran)	Daratumumab (Darzalex)	CAEL-101 (11-1F4)
Dex	Carfilzomib (Kyprolis)	Thalidomide (Thalomid)	Melphalan (IV) (Transplant)	Isatuximab (SAR650984)	Dezemizumab (GSK 8852) (anti-sAI-mAB)
	lxazomib (Ninlaro)	Pomalidomide (Pomalyst)	Cyclophosphamide (Cytoxan)	Venetoclax (Venclexta)	NF 001
	Marizomib		Bendamustine (Treanda)		Doxycycline / TUDCA
	Oprozomib				EGCG (Green tea extract)
					Curcumin (Turmeric)

CENTRAL ILLUSTRATION Chemotherapy in AL Amyloidosis With Heart Failure: Kaplan-Meier Survival Estimates

Kaplan-Meier curve representing the association between treatment regimen and all-cause mortality. There was a significant association between treatment regimen and survival (p < 0.001), with the lowest mortality seen in the bortezomib, dexamethasone, and alkylating agent (BDex+AA) cohort.

Treatments

- AL cardiac amyloidosis
 - Bortezomib + cyclophosphamide + dexamethasone (CyBorD)
 - Daratumumab
 - CyBorD + daratumumab
 - High dose melphalan + ASCT → considered in patients with less cardiac involvement
- ATTR cardiac amyloidosis

Figure 2: Transthyretin protein production and drug mechanisms of action

The TTR gene is transcribed into mRNA and translated into a protein. The protein folds into monomers which are aggregated into a tetramer. Translation of TTR mRNA can be blocked by using either a small interfering RNA (siRNA) or an antisense oligonucleotide. siRNA is a synthetic double-stranded RNA which uses the RNA-induced silencing complex (RISC) to cleave TTR mRNA. Anti-sense oligonucleotides are short complementary DNA sequences which hybridize with the mRNA which is recognized and cleaved by an RNase. Tafamidis, diflunisal or EGCG work on the folded TTR protein by stabilizing the tetramer and preventing dissociation into monomers which can form fibrils. TUDCA/Doxycycline and anti-SAP antibodies act by allowing re-uptake of deposited fibrils and also preventing some fibril deposition.

A Change from Baseline in 6-Minute Walk Test

ORIGINAL ARTICLE

Tafamidis Treatment for Patients with Transthyretin Amyloid Cardiomyopathy

Mathew S. Maurer, M.D., Jeffrey H. Schwartz, Ph.D., Balarama Gundapaneni, M.S., Perry M. Elliott, M.D., Giampaolo Merlini, M.D., Ph.D., Marcia Waddington-Cruz, M.D., Arnt V. Kristen, M.D., Martha Grogan, M.D., Ronald Witteles, M.D., Thibaud Damy, M.D., Ph.D., Brian M. Drachman, M.D., Sanjiv J. Shah, M.D., Mazen Hanna, M.D., Daniel P. Judge, M.D., Alexandra I. Barsdorf, Ph.D., Peter Huber, R.Ph., Terrell A. Patterson, Ph.D., Steven Riley, Pharm.D., Ph.D., Jennifer Schumacher, Ph.D., Michelle Stewart, Ph.D., Marla B. Sultan, M.D., M.B.A., and Claudio Rapezzi, M.D., for the ATTR-ACT Study Investigators*

No. of Patien	ts					
Tafamidis	264	233	216	193	163	155
Placebo	177	147	136	111	85	70

B Change from Baseline in KCCQ-OS

Patisiran, an RNAi Therapeutic, for Her

David Adams, M.D., Ph.D., Alejandra Gonzalez-Duarte, M.D., William D. O'Riordan, M.D., C Tournev, M.D., Hartmut H. Schmidt, M.D., Teresa Coelho, M.D., John L.

- IV infusion q3 weeks
- 225 patients \rightarrow 18 month follow up
- Results: difference in mNIS+7 (34 points) and Norfolk QOL-DN (21 points)
- Side effects: infusion reactions in 20% of patients (10% in placebo)

Inotersen Treatment for Patients with Hereditary Transthyretin Amyloidosis

Merrill D. Benson, M.D., Márcia Waddington-Cruz, M.D., Ph.D., John L. Berk, M.D., Michael Polydefkis, M.D., M.H.S., Peter J. Dyck, M.D., Annabel K. Wang, M.D., Violaine Planté-Bordeneuve, M.D., Fabio A. Barroso, M.D., Giampaolo Merlini, M.D., Laura Obici, M.D., Morton Scheinberg, M.D., Thomas H. Brannagan, III, M.D., <u>et al.</u>

- Placebo controlled RCT
- 172 patients
- 15 month follow up
- hATTR with polyneuropathy
- Weekly SQ inotersen
- Results: improved mNIS+7 (19.7 points) and Norfolk QOL-DN (11.7) neuropathy scores
- Side effects: 5 deaths in inotersen group, none in placebo.
 - Glomerulonephritis (3%) and thrombocytopenia (3%)

Treatments

• AL cardiac amyloidosis

- Bortezomib + cyclophosphamide + dexamethasone (CyBorD)
- Daratumumab
- CyBorD + Daratumumab
- High dose melphalan + ASCT \rightarrow considered in patients with less cardiac involvement
- Doxycycline, turmeric/curcumin
- Advanced therapies

• ATTR cardiac amyloidosis

- Green tea extract (EGCG 600-800mg/day), doxycycline/TUDCA, turmeric (curcumin)
- Patisiran (IV infusion) or Inotersen (SQ injection) for hATTR neuropathy
- Tafamidis (oral) for wtATTR and hATTR cardiomyopathy
- Clinical trials
- Advanced therapies

Research and Development

- AG10 (TTR stabilizer)
- Patisiran in cardiomyopathy
- Vutrisiran in cardiomyopathy
- Akcea-TTR-LRx (newer version of inotersen)

Summary

- High clinical suspicion for amyloidosis in the right situation
- Look for red flags
- Initial workup:
 - Serum studies for AL \rightarrow free light chains kappa/lambda, serum IFE, urine IFE
 - CV myocardial PYP imaging (ie technetium pyrophosphate) for ATTR
- Don't miss AL amyloidosis! Cardiac / hematologic emergency
- Novel treatment options

Saint Luke's MAHI Amyloidosis Program

- www.saintlukeskc.org/amyloidosis
- <u>amyloid@saintlukeskc.org</u>

