Be Good to Yourself:: TIA Treatment and Risk Factors

TERRI HAMM RN, MA, BA STROKE TEAM COORDINATOR MERCYONE, DES MOINES

Define the goals for management of Transient Ischemic Attack (TIA) and risk reduction

TIA by Definition

- Brief episodes of neurologic dysfunction resulting from focal cerebral ischemia not associated with permanent cerebral infarction. This includes, brain, spinal cord and retinal ischemia without acute infarction or tissue injury.
- Duration of symptoms is not reliable in determining TIA.
- At least 240,000 individuals experience the symptoms of TIA in the US per year.
- 90 day stroke risk after TIA can be as high as 17.8% with almost half occurring within 2 days of index event.

ABCD2 Score

- ► A:Age; > 60=1 point
- B: Blood pressure;>140=1 point
- C: Clinical Features; Unilateral weakness=2 points Isolated Speech=1 Point
- D: Duration of Symptoms; > 60 minutes=2 points 10-59 minutes=1 point <10 minutes=0 points</p>
- Diabetes=1 point
- The predictive value of this scoring system has not been found to be reliable in several studies

Risk Factors

- ► Hypertension
- ► Hyperlipidemia
- Diabetes
- Smoking
- Atrial Fibrillation
- Extracranial Carotid Artery Disease
- Severe intracranial stenosis
- ► PFO
- Physical Inactivity/Obesity
- ETOH and Drug Use

Treatment Considerations

Specific recommendations for prevention strategies often depend on ischemic stroke subtype.

Attempts to identify stroke subtype will assist in guiding the secondary prevention model via diagnostic workup.

TOAST Criteria

- Lacunar syndrome; with normal CT/MRI or subcortical stroke measuring <1.5 cm in diameter on CT or MRI. Most lacunar strokes are due to small vessel disease.
- Small vessel stroke: Subcortical stroke measuring <1.5 cm in diameter on CT/MRI without concomitant cortical infarct.
- Cardioembolic Stroke: Stroke attributable to arterial occlusion from an embolus that presumably arose from the heart
- Crypotgenic stroke: Unknown source despite diagnostic assessment
- Large Artery Atherosclerosis: Symptoms in the vascular distribution of a major intracranial or extracranial artery with >50% stenosis or occlusion on vascular imaging.

Diagnostics

Evaluation for TIA should be adherent to evaluation for stroke

- Clinical Evaluation
- NCCT: Useful in detecting subacute ischemia, hemorrhage or mass lesion, however limited utility in determining acute ischemia
- MRI: Preferred method for evaluating acute ischemic infart; ideally within 24 hours of symptom onset
- Vascular imaging: CTA is widely accessible and has a higher sensitivity and positive predictive value than MRA for detection of intracranial stenosis and occlusion. Considered safe in patients with CKD. Carotid ultrasound may also be employed to r/o CAS.

Laboratory Testing

- POC blood glucose should be performed on all patients with suspected TIA
- CBC, Chemistry panel, A1C, and lipid panel can assist in identifying potential risk factors. FYI and non-fasting lipid panel is acceptable.
- Troponin assays are also suggested on all patients with TIA given shared risk factors for MI and AIS.
- ECG and telemetry are warranted to observe for Atrial fibrillation.
- If cardioembolic source suspected AHA/ASA recommends prolonged rhythm monitoring (at least 30 days).

To Echo or Not to Echo that is the question

- The role of echocardiography in TIA has not been well established but TTE echo is often performed to r/o structural abnormalities or source of cardioembolism.
- If suspicion for cardioembolism is low and the patient otherwise safe for discharge an expedited study can be performed outpatient (ideally within 1 week).
- Neurology should participate in this decision making however.
- If high degree of suspicion for cardioembolism TEE should be considered as well.

We have them in the ED, now what do we do with them?

- Multiple factors affect the ability of ED's or medical centers to care for patients with suspected TIA.
- Clinician experience, risk tolerance for neurovascular conditions, availability of imaging and access to neurovascular expertise.
- Rapid work-up protocols for TIA patients allow most patients to be discharged within 24 hours; depending on resource availability
- Stroke centers supporting critical access hospitals should be aware of the resources available to those hospitals when determining transfer for assessment and secondary treatment/prevention

Secondary Risk Reduction

- This will be based on risk stratification and outcome of work-up
- Antiplatelet (should be started within 12-24 hours of symptom onset ideally)
- Antihypertensive (long-term goal per AHA is <130/80)</p>
- Anticoagulant (for patients with AF or other indications)
- Lipid lowering agent (goal LDL <70 mg/dL) high intensity assists in plaque stabilization, improved endothelial dysfunction and inflammatory response
- Diabetes Management
- Consider nutritionist consult (AHA encourages low sodium or Mediterranean diet
- Lifestyle modification: Smoking cessation, physical activity, ETOH moderation, cessation of recreational drug use
- Follow-up appointment

Stroke Education

- Utilize teach back methods; do they really understand what you taught?
- Multilingual education materials are very helpful
- Less is more; don't overwhelm them
- Communicate with PCP whenever possible; they are the key to successful changes in risk reduction
- Engage the family; they have skin in the game too

Final Thoughts

- TIA is a strong predictor of future stroke
- Requires careful evaluation
- Know your resources and seek help from neurovascular experts
- Encourage family participation in risk reduction
- Follow up appointments are essential
- If available utilize health coaches
- Small communities can benefit from healthy lifestyle challenges that assist in risk reduction overall

Thank you!

Thanks to all of you who work hard every day to provide care to this patient population!

Resources

- Diagnosis, Workup, Risk Reduction of Transient Ischemic Attack in the Emergency Department Setting: A Scientific Statement From the American Heart Association
- Hardik P. Amin,
- ► <u>Tracy E. Madsen</u>,
- Dawn M. Bravata,
- ► <u>Charles R. Wira</u>,
- S. Claiborne Johnston,
- Susan Ashcraft,
- ► <u>Tamika M. Burrus</u>,
- Peter D. Panagos,
- Max Wintermark,
- <u>Charles Esenwa</u> and
- ► ... See all authors
- Criginally published 19 Jan 2023 https://doi.org/10.1161/STR.0000000000000418 Stroke. 2023;54:e109-e121
- ► Other version(s) of this article
- Abstract

- > 2021 Guideline for the Prevention of Stroke in Patients With Stroke and Transient Ischemic Attack: A Guideline From the American Heart Association/American Stroke Association
- Dawn O. Kleindorfer,
- ► <u>Amytis Towfighi</u>,
- <u>Seemant Chaturvedi</u>,
- ► <u>Kevin M. Cockroft</u>
- ► <u>Jose Gutierrez</u>,
- Debbie Lombardi-Hill,
- <u>Hooman Kamel</u>,
- Walter N. Kernan,
- <u>Steven J. Kittner</u>,
- ► <u>Enrique C. Leira</u>,
- Olive Lennon.
- James F. Meschia,
- <u>Thanh N. Nguyen</u>,
- Peter M. Pollak,
- Pasquale Santangel
- Anjail Z. Sharrief,
- ► <u>Sidney C. Smith Jr</u>.
- Tanya N. Turan and
- Linda S. Williams
- Criginally published24 May 2021<u>https://doi.org/10.1161/STR.00000000000375</u>Stroke. 2021;52:e364-e467