Best of Scientific Sessions: Award Winners in Resuscitation

Thursday February 8, 2018

Presenters:
Sarah M. Perman, MD MSCE
Brahmajee K. Nallamothu, MD, MPH
Sarah M. Perman, MD, MSCE
Assistant Professor of Emergency Medicine
Department of Emergency Medicine
University of Colorado, School of Medicine

Brahmajee K. Nallamothu, MD, MPH
Professor, Division of Cardiovascular Diseases
and the Department of Internal Medicine
University of Michigan
Sarah M. Perman, MD, MSCE
Assistant Professor of Emergency Medicine
Department of Emergency Medicine
University of Colorado, School of Medicine
Do Race and Sex Differences Exist for “Do Not Attempt Resuscitation” Orders in Patients Successfully Resuscitated from In-Hospital Cardiac Arrest?

Sarah M. Perman, MD MSCE
Department of Emergency Medicine
University of Colorado School of Medicine

AHA Resuscitation Webinar
Disclosures

• Building Interdisciplinary Research Careers in Women’s Health (BIRCWH)
 – NIH Eunice Kennedy Shriver National Institute of Child Health and Human Development
 – 5K12 HD057022-09
Acknowledgements

Co-Authors
• Brenda L. Beaty, MSPH
• Stacie L. Daugherty, MD MSPH
• Steven M. Bradley, MD
• Timothy J. Fendler, MD
• Jason S. Haukoos, MD MSc
• Edward P. Havranek, MD
• Paul S. Chan, MD Msc

Mentors
• Ed Havranek, MD
• Stacie Daugherty, MD MSPH
• Benjamin Abella, MD MPhil
200,000 individuals suffer an in-hospital cardiac arrest annually in the US\(^1\) and survival is approximately 22.3\(^%\)\(^2\)

Variability has been observed in survival to hospital discharge\(^2\)

Individuals with DNAR orders have lower likelihood of survival in comparison to those without DNAR orders\(^3\)

\(^{1}\) Merchant, et al. CCM 2011; \(^{2}\) Girotra et al. NEJM 2012; \(^{3}\) Fendler et al., JAMA 2015
Sex and Race/Ethnicity Affect Establishment of DNAR

- **Women vs. Men**
 - Intra-cerebral hemorrhage:
 Women ↑ likely to have early DNAR vs. Men¹
 - Emergency surgery:
 Women ↑ likely to receive DNAR vs. Men with similar prognosis²

- **Black/Latino vs. White**
 - Advanced cancer:
 Black and Latino patients ↓ likely to have DNAR orders than White patients³

Is there variability in incidence and timing of DNAR orders by sex and race/ethnicity?

- Women will have more frequent and earlier establishment of DNAR
- Underrepresented minorities will have less frequent establishment of DNAR orders
Inclusion & Exclusion Criteria

• Get With the Guidelines – Resuscitation
 – National quality assurance registry of in-hospital cardiac arrest
 – 4/1/06 - 12/31/2016

• Inclusion:
 – ≥ 18 years
 – Primary cardiac arrest event
 – Return of spontaneous circulation

• Exclusion:
 – Arrest in a procedural area or ED
 – Missing time data (time of ROSC, time of DNR, time of death/dc)
 – Pre-existing DNR
Statistical Analysis

• Multivariable mixed effects modeling
 – Adjust for patient and cardiac arrest factors
 – Explore the associations between sex, race/ethnicity and \textit{de novo} establishment of DNAR orders
 □ at any time after ROSC
 □ within 12 hours of ROSC
 □ Within 72 hours of ROSC

• All models included a random effect for hospital to account for clustering
Flow Chart to Describe Excluded Subjects

127,172 Patients had index pulseless cardiac arrest and ROSC during the study period

55,352 (43.5%) Excluded
- 27,566 Arrest occurred outside of ICU or Ward
- 18,758 Missing Data*
- 9,028 DNAR prior to arrest event

71,820 Study Participants

*Missing data includes DNAR, Event duration, Discharge status, Discharge date, Pre-existing conditions, Initial pulseless rhythm, Sex
<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Female (n=30,454)</th>
<th>Male (n=41,366)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, Mean (sd)</td>
<td>65.5 (15.8)</td>
<td>64.6 (15.1)</td>
<td><0.0001</td>
</tr>
<tr>
<td>Race, n (%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Caucasian</td>
<td>18774 (61.7)</td>
<td>27934 (67.5)</td>
<td><0.0001</td>
</tr>
<tr>
<td>African-American</td>
<td>7916 (26.0)</td>
<td>8022 (19.4)</td>
<td></td>
</tr>
<tr>
<td>Hispanic/Other</td>
<td>3764 (12.4)</td>
<td>5410 (13.1)</td>
<td></td>
</tr>
<tr>
<td>Initial Rhythm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non-shokable</td>
<td>24842 (81.6)</td>
<td>32241 (77.9)</td>
<td><0.0001</td>
</tr>
<tr>
<td>Shockable</td>
<td>5612 (18.4)</td>
<td>9125 (22.1)</td>
<td></td>
</tr>
<tr>
<td>Duration</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0-5 min</td>
<td>9902 (32.5)</td>
<td>13244 (32.0)</td>
<td>0.15</td>
</tr>
<tr>
<td>6-10 min</td>
<td>7243 (23.8)</td>
<td>9763 (23.6)</td>
<td></td>
</tr>
<tr>
<td>11-20 min</td>
<td>7124 (23.4)</td>
<td>9994 (24.2)</td>
<td></td>
</tr>
<tr>
<td>21 min +</td>
<td>6185 (20.3)</td>
<td>8365 (20.2)</td>
<td></td>
</tr>
</tbody>
</table>
Patient and Arrest Characteristics by Subject Race/Ethnicity

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Caucasian (n=46,708)</th>
<th>AA (n=15,938)</th>
<th>Hispanic/Oth. (n=9,174)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, Mean (sd)</td>
<td>66.6 (14.8)</td>
<td>61.4 (15.9)</td>
<td>62.6 (16.2)</td>
<td><0.0001</td>
</tr>
<tr>
<td>Female, n (%)</td>
<td>30455 (42.4)</td>
<td>7916 (49.7)</td>
<td>3764 (41.0)</td>
<td><0.0001</td>
</tr>
<tr>
<td>Initial Rhythm</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non-shockable</td>
<td>35866 (76.8)</td>
<td>13797 (86.6)</td>
<td>7420 (80.9)</td>
<td><0.0001</td>
</tr>
<tr>
<td>Shockable</td>
<td>10842 (23.2)</td>
<td>2141 (13.4)</td>
<td>1755 (19.1)</td>
<td></td>
</tr>
<tr>
<td>Duration</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0-5 min</td>
<td>15433 (33.0)</td>
<td>4847 (30.4)</td>
<td>2866 (31.2)</td>
<td>0.0001</td>
</tr>
<tr>
<td>6-10 min</td>
<td>10897 (23.3)</td>
<td>3916 (24.6)</td>
<td>2193 (23.9)</td>
<td></td>
</tr>
<tr>
<td>11-20 min</td>
<td>10969 (23.5)</td>
<td>3964 (24.9)</td>
<td>2185 (23.8)</td>
<td></td>
</tr>
<tr>
<td>21 min +</td>
<td>9409 (20.1)</td>
<td>3211 (20.2)</td>
<td>1930 (21.0)</td>
<td></td>
</tr>
</tbody>
</table>
Medical comorbidities across demographics

<table>
<thead>
<tr>
<th>Condition</th>
<th>Female (n=71,820)</th>
<th>Male (n=41,366)</th>
<th>p-value</th>
<th>Caucasian (n=46,708)</th>
<th>AA (n=15,938)</th>
<th>Hispanic (n=9,174)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stroke</td>
<td>1262 (4.1)</td>
<td>1613 (3.9)</td>
<td>0.10</td>
<td>1649 (3.5)</td>
<td>847 (5.3)</td>
<td>✓ 379 (4.1)</td>
<td><.0001</td>
</tr>
<tr>
<td>CHF*</td>
<td>5115 (16.8)</td>
<td>7305 (17.7)</td>
<td>0.01</td>
<td>8280 (17.7)</td>
<td>2783 (17.5)</td>
<td>1357 (14.8)</td>
<td><.0001</td>
</tr>
<tr>
<td>Diabetes</td>
<td>10586 (34.8)</td>
<td>14199 (34.3)</td>
<td>0.26</td>
<td>15311 (32.8)</td>
<td>6167 (38.7)</td>
<td>✓ 3307 (36.1)</td>
<td><.0001</td>
</tr>
<tr>
<td>Hepatic Insufficiency</td>
<td>2222 (7.3)</td>
<td>3720 (9.0)</td>
<td><.0001</td>
<td>3499 (7.5)</td>
<td>1463 (9.2)</td>
<td>980 (10.7)</td>
<td><.0001</td>
</tr>
<tr>
<td>Hypotension Hypo perfusion</td>
<td>7504 (24.6)</td>
<td>10110 (24.4)</td>
<td>0.57</td>
<td>11324 (24.2)</td>
<td>4088 (25.7)</td>
<td>✓ 2202 (24.0)</td>
<td>0.0008</td>
</tr>
<tr>
<td>Metastatic/Hematologic Malignancy</td>
<td>3492 (11.5)</td>
<td>4604 (11.1)</td>
<td>0.22</td>
<td>5235 (11.2)</td>
<td>1949 (12.2)</td>
<td>✓ 912 (9.9)</td>
<td><.0001</td>
</tr>
<tr>
<td>MI*</td>
<td>3786 (12.4)</td>
<td>6346 (15.3)</td>
<td><.0001</td>
<td>7421 (15.9)</td>
<td>1464 (9.2)</td>
<td>1247 (13.6)</td>
<td><.0001</td>
</tr>
<tr>
<td>Electrolyte abnormality</td>
<td>5926 (19.5)</td>
<td>7742 (18.7)</td>
<td>0.03</td>
<td>8553 (18.3)</td>
<td>3485 (21.9)</td>
<td>✓ 1630 (17.8)</td>
<td><.0001</td>
</tr>
<tr>
<td>Pneumonia</td>
<td>4611 (15.1)</td>
<td>6530 (15.8)</td>
<td>0.03</td>
<td>7222 (15.5)</td>
<td>2692 (16.9)</td>
<td>✓ 1227 (13.4)</td>
<td><.0001</td>
</tr>
<tr>
<td>Renal Insufficiency</td>
<td>11107 (36.5)</td>
<td>16056 (38.8)</td>
<td><.0001</td>
<td>16049 (34.4)</td>
<td>7669 (48.1)</td>
<td>✓ 3445 (37.6)</td>
<td><.0001</td>
</tr>
<tr>
<td>Respiratory Insufficiency</td>
<td>14023 (46.1)</td>
<td>18588 (44.9)</td>
<td>0.007</td>
<td>21350 (45.7)</td>
<td>7473 (46.9)</td>
<td>✓ 3788 (41.3)</td>
<td><.0001</td>
</tr>
<tr>
<td>Septicemia</td>
<td>6237 (20.5)</td>
<td>7790 (18.8)</td>
<td><.0001</td>
<td>3677 (18.6)</td>
<td>3616 (22.7)</td>
<td>✓ 1734 (18.9)</td>
<td><.0001</td>
</tr>
</tbody>
</table>

*On this admission
Women have greater relative risk of DNAR compared to men

<table>
<thead>
<tr>
<th>Outcome</th>
<th>RR (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DNAR</td>
<td>1.15 (1.1, 1.2)</td>
</tr>
<tr>
<td>DNAR <12h</td>
<td>1.4 (1.29, 1.53)</td>
</tr>
<tr>
<td>DNAR <72h</td>
<td>1.35 (1.25, 1.45)</td>
</tr>
</tbody>
</table>

Women at less risk

Women at greater risk
Non-white patients have less relative risk of DNAR compared to white patients

<table>
<thead>
<tr>
<th>Outcome*</th>
<th>RR (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DNAR, AA</td>
<td>0.81 (0.76-0.87)</td>
</tr>
<tr>
<td>DNAR, H/O</td>
<td>0.80 (0.73-0.89)</td>
</tr>
<tr>
<td>DNAR <12h, AA</td>
<td>0.74 (0.66-0.83)</td>
</tr>
<tr>
<td>DNAR <12h, H/O</td>
<td>0.81 (0.71-0.93)</td>
</tr>
<tr>
<td>DNAR <72h, AA</td>
<td>0.75 (0.68-0.82)</td>
</tr>
<tr>
<td>DNAR <72h, H/O</td>
<td>0.85 (0.75-0.95)</td>
</tr>
</tbody>
</table>

*AA: African American; H/O: Hispanic/Other
Limitations

• Registry study
 – Cannot account for unmeasured confounding or bias
 – Missing data (14.8%)

• Decision to establish DNAR
 – Cannot account for patient/surrogate preferences
Future Directions

• Does a similar association occur with decisions to Withdraw Life Sustaining Therapy?

• How does early DNAR affect survival and neurologic recovery?

• Why are there differences by sex and race/ethnicity in timing and utilization of DNAR?
 – Factors driving this association
 – Patient preference versus implicit bias
Conclusion

• Female sex was associated with higher risk of DNAR (<12 hours and <72 hours) after successful resuscitation

• Non-white race/ethnicity was associated with lower risk of DNAR after resusciation

• These differences should be further explored to identify barriers and facilitators to equitable healthcare delivery
Brahmajee K. Nallamothu, MD, MPH
Professor, Division of Cardiovascular Diseases
and the Department of Internal Medicine
University of Michigan
DO RESUSCITATION TEAMS AT TOP HOSPITALS FOR IN-HOSPITAL CARDIAC ARREST DIFFER?

Brahmajee K Nallamothu
11 November 2017
IHCA OUTCOMES VARY ACROSS HOSPITALS

What Distinguishes these Top-Performing Hospitals?

JACC 2013
Quantitative Studies Limited

- Mostly demonstrate structural factors differ between top-performing hospitals and others
 - Size
 - Geography
 - Teaching status
- Surveys find resuscitation practices differ but modestly explain outcomes variability

Survey of 150 U.S. hospitals followed by a qualitative phase consisting of semi-structured, in-person interviews and site visits at 9 hospitals across the U.S.

Part 1
- Surveyed IHCA personnel at 150 hospitals
- Interviews with key informants at 9 hospitals across the U.S.

Part 2
- Re-design of survey and its administration

Part 3

My presentation focuses on the role of resuscitation teams during IHCA
HOSPITAL SELECTION

• GWTG-R hospitals between 2012-2014
• At least 20 IHCAs during this period
• Selected based on risk-standardized survival; positive deviance approach
• 5 "Top", 1 "Middle", & 3 "Bottom" Hospitals
• Also considered geography, size, & teaching
• 12 hospitals approached; 9 accepted

Table 2. Hospital Characteristics

<table>
<thead>
<tr>
<th>Hospital</th>
<th>Region</th>
<th>Staffed Beds</th>
<th>RSSR, percentile, 2014</th>
<th>Teaching Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Midwest</td>
<td>>800</td>
<td>92.7</td>
<td>Major</td>
</tr>
<tr>
<td>2</td>
<td>Midwest</td>
<td>200 to 400</td>
<td>87.9</td>
<td>Minor</td>
</tr>
<tr>
<td>3</td>
<td>South</td>
<td>>400 to 800</td>
<td>97.8</td>
<td>Non-Teaching</td>
</tr>
<tr>
<td>4</td>
<td>Midwest</td>
<td>200 to 400</td>
<td>93.9</td>
<td>Major</td>
</tr>
<tr>
<td>5</td>
<td>West</td>
<td>200 to 400</td>
<td>2.5</td>
<td>Minor</td>
</tr>
<tr>
<td>6</td>
<td>South</td>
<td>>800</td>
<td>2.1</td>
<td>Minor</td>
</tr>
<tr>
<td>7</td>
<td>West</td>
<td>200 to 400</td>
<td>17.2</td>
<td>Non-Teaching</td>
</tr>
<tr>
<td>8</td>
<td>Northeast</td>
<td>>800</td>
<td>100</td>
<td>Major</td>
</tr>
<tr>
<td>9</td>
<td>Northeast</td>
<td>>400 to 800</td>
<td>10.3</td>
<td>Minor</td>
</tr>
</tbody>
</table>

RSSR = risk-standardized survival rate
DATA COLLECTION

• 158 interviews performed between 2016-2017
 – CEOs, Chiefs of Staff, VPs, Directors, QI Staff
 – Hospitalists, Critical Care & Emergency Medicine Docs, Anesthesiologists, & Residents
 – Nurses (NPs, ICU nurses, floor nurses), RT, PAs, Pharmacy, IV Team, ACLS Staff, Security, Spiritual Services, & Biomed Engineering

• 78 hours 29 mins; 778,482 transcribed words
METHODS: INTERVIEWS

• Interviewees used semi-structured interview guide

<table>
<thead>
<tr>
<th>Interview Guide Topics</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Let’s start by having you describe what you do.</td>
</tr>
<tr>
<td>2. Please describe your hospital’s policies and practices related to preventing IHCA</td>
</tr>
<tr>
<td>and selecting patients appropriate for resuscitation care.</td>
</tr>
<tr>
<td>3. Please describe the process by which your hospital responds to the event of IHCA.</td>
</tr>
<tr>
<td>4. Please describe how your hospital cares for patients following IHCA if they survive.</td>
</tr>
<tr>
<td>5. Who is responsible for oversight and QI efforts related to IHCA at your hospital?</td>
</tr>
<tr>
<td>(e.g., CPR committee)</td>
</tr>
<tr>
<td>6. In the last 3 years, please describe the major initiatives your hospital has</td>
</tr>
<tr>
<td>undertaken to improve care of patients with IHCA.</td>
</tr>
<tr>
<td>7. Please describe your perception of administrative support for QI efforts and</td>
</tr>
<tr>
<td>specifically for initiatives related to IHCA at your hospital.</td>
</tr>
<tr>
<td>8. If you could change one thing about the IHCA care processes at your hospital, what</td>
</tr>
<tr>
<td>would it be?</td>
</tr>
<tr>
<td>9. If you were helping other hospitals improve IHCA care, how would you recommend they</td>
</tr>
<tr>
<td>structure a program?</td>
</tr>
</tbody>
</table>

• 1 Clinician:1 Methods Expert paired in interviews; only 2 PIs “unblinded“ to hospital performance
METHODS: ANALYSIS

• Transcripts coded by 4 team members

• Analyzed using MAXQDA

• Summary reports generated for each site and reviewed together

• Team members met regularly to question, discuss, and document interpretations and findings

• Key themes identified through rigorous analytic process and based on our conceptual framework
Results
FOUR THEMES DISTINGUISHED TOP HOSPITALS

- DESIGN
- COMPOSITION & ROLES
- COMMUNICATION & LEADERSHIP
- QI
TEAM DESIGN

• Two axes (for Nursing)
 • **Dedicated Teams**: Were members specifically tasked to teams?
 • **Designated Teams**: Were members assigned to teams prior to IHCA?

• Top hospitals: Dedicated or Designated teams
• Middle & bottom hospitals did **not**
"I think what we have is again the fact that you have the ‘team’… You have a dedicated team… That’s this is all they’re doing, waiting for us, like having a fire service…"

- Critical Care Doc, Hospital #1
“They come up with a plan beforehand, on who’s going to assume that role so they’re not doing it in the moment, during the crisis.”

- Nurse Supervisor, Hospital #2
“We’ve tried to say, ‘okay, at the beginning of the shift, you're the code nurse,’ but it never…very rarely happened…so usually, we don’t assign code nurses anymore. As soon as we hear it called, you will see if there’s people in the hallway, or a head sticking out doors”

• Critical Care Nurse Hospital #7
• Not too different across hospitals for key staff: docs, nurses, RT, anesthesia

• Variable around pharmacy, IV, EKG, security…

• Major differences in Residents
 • Top Hospitals appeared to support residents
 • Bottom hospitals less support for HOs

• Universal complaint also of “crowd control”
“I don't mean they [residents] suck, but look at what we give 'em. They come in as first years, they don't know anything. They come in as second years, they sort of know what's going on. By the third year, their starting their stride. They start to get good at what they do, and then they graduate and leave, and then we're back to the people that are being fed through the PEZ container…”

• ACLS Instructor, Hospital 9
COMPOSITION & ROLES

- Top hospitals had roles & responsibilities delineated prior to an IHCA and often trained specifically to perform these functions.

- Bottom hospitals assigned roles after arrival leading to possible delays and confusion.
• “…When (Medical Director) took over and, and kind of structured everything, all of a sudden it was, it was…It was almost a slap in the face because they’re like what do you mean, I can run this entire code. Now you’ve stuck me just on the d-fib. But, the more you do it, the more laid back and structured and calm you see these codes run…You just show up and you know what you’re supposed to do, and there’s no screaming and there’s no yelling.”
COMMUNICATION & LEADERSHIP

• Top hospitals emphasized communication & mutual respect with corrective mechanisms for dealing with problems

• Bottom hospitals struggled with communication and frequently described codes as “chaos”
QI Efforts

- “Mock Codes” universally praised but treated differently at top hospitals
 - Multidisciplinary
 - “Unplanned”
 - Focused with debriefs (“less than 20 mins”)

“Imagine an orchestra that never practices…”
WHAT DIDN’T DISTINGUISH TOP HOSPITALS?

• ACLS Certification Requirements

• Technology
 • Ultrasound
 • Mechanical Chest Compression
 • Bedside Laboratory Tests
DISCUSSION
Study Limitations

- No estimates of effect size or statistical significance as with quantitative evaluation

- Extending our findings to the ~6000 US hospitals complicated by unique local contexts of each one

- We focused on resuscitation teams only
Conclusions

• We identified several characteristics that appear to distinguish top hospitals’ resuscitation teams

• Adopting these characteristics may help hospitals wishing to improve IHCA outcomes

• Ideally, hospital administrators and clinicians may use our results to better inform the structure of resuscitation teams at their hospitals
Thank You!

• NEW HEROIC survey released end of February
• Please take time to review & submit!
• For questions or comments, contact:
 Brad Trumpower <trumpb@med.umich.edu>
Contact Us to Learn More

Tanya Lane Truitt, RN MS
Senior Manager QSI Programs & Operations: Resuscitation & HF
Get With The Guidelines®
tanya.truitt@heart.org

Liz Olson, CVA
Program Manager, Get With The Guidelines – Resuscitation
liz.olson@heart.org

Stay informed on the latest updates from Get With The Guidelines

Sign Up for Focus on Quality e-Communications
Thank you for your active participation and contributions to GWTG-Resuscitation!