Rehab Nursing in Acute Inpatient Stroke

ELIZABETH PERKINS, BSN, CNRN
NEUROSCIENCE STROKE COORDINATOR
PROVIDENCE SACRED HEART MEDICAL CENTER

NO DISCLOSURES
Objectives

- Correlate stroke deficits with rehabilitation considerations
- Identify elements of acute inpatient nursing care that impact stroke patient outcomes and discharge placement
What defines Acute Stroke Care??

- IV Alteplase
- IR Clot Retrieval
- Rapid EMS Response
- D to N Times
- Frequent VS & Neuro checks
Inpatient Acute Care Nursing in Stroke

- Vital Signs
- Neuro Checks
- Head to Toe Assessment
- Medication administration
- Turn, bathe, feed
- Rehab???
Nursing Challenges in Inpatient Stroke

External Care Challenges:
- Heavy patients
- Aphasia
- Dysphagia
- Hemiplegia
- Incontinence
- Impulsivity

Internal Care Challenges:
- Internal biases
- Feelings about neurological deficits and QOL
- Personal or family history
GOALS of rehabilitation in the acute care setting:

- Decrease morbidity
- Maximize function
- Prevent rehospitalization
Medical and Physiological Issues in Acute Stroke
Acute and Subacute Issues in Stroke

<table>
<thead>
<tr>
<th>Vision dysfunction</th>
<th>DVT/PE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contractures</td>
<td>Spasticity</td>
</tr>
<tr>
<td>Falls</td>
<td>Deconditioning</td>
</tr>
<tr>
<td>Seizures</td>
<td>Psychiatric sequelae</td>
</tr>
<tr>
<td>Hydrocephalus</td>
<td>Urinary tract dysfunction</td>
</tr>
<tr>
<td>Hyperglycemia/Electrolyte imbalance</td>
<td>Skin breakdown</td>
</tr>
<tr>
<td>Osteoporosis</td>
<td>Dysphagia</td>
</tr>
<tr>
<td>Extremity edema</td>
<td>Shoulder dysfunction</td>
</tr>
<tr>
<td>Cerebral edema/hemorrhage</td>
<td>Post-stroke fatigue</td>
</tr>
</tbody>
</table>
Decrease Morbidity

Key Take-Away

- Acute decrease in LOC or responsiveness
- Requires astute nursing assessment hand-in-hand with aggressive medical management

- **Hemorrhage**
 - Strict blood pressure management
 - Goal 140/90
 - Decompression if brain compression and shift
 - May need ventriculostomy if develops obstructive hydrocephalus

- **Cerebral edema**
 - Patient dependent
 - Type of edema, age of brain
 - HTS 3% – rate dependent on Na+ level
 - Goal is 145-155 mEq/L, maintained until edema stable, tapered slowly over hours to days
 - Decompression if malignant edema
 - Aggressive treatment of any fever
 - Maintain ICP < 20 mmHg
Decrease Morbidity

Key Take-Away

- Acute decrease in LOC or responsiveness
- Requires astute nursing assessment hand-in-hand with acute medical management

Seizures

- 88% of all seizures occur w/in first year
 - Late onset epilepsy 6-18%
 - Early seizures 10%
 - 57% of these in first week

Hydrocephaalus

- Increased with SAH/ICH, can be acute or subacute
- Diagnosis: increased ventricle size on CT
- Treatment: ventricular shunt
- Late onset – see triad of symptoms:
 - Lethargy with decreased mental function
 - Ataxia
 - Urinary incontinence

Key Take-Away

- Acute decrease in LOC or responsiveness
- Requires astute nursing assessment hand-in-hand with acute medical management

Seizures

- 88% of all seizures occur w/in first year
 - Late onset epilepsy 6-18%
 - Early seizures 10%
 - 57% of these in first week

Hydrocephaalus

- Increased with SAH/ICH, can be acute or subacute
- Diagnosis: increased ventricle size on CT
- Treatment: ventricular shunt
- Late onset – see triad of symptoms:
 - Lethargy with decreased mental function
 - Ataxia
 - Urinary incontinence
Decrease Morbidity

Key Take-Away
- Diligent nursing assessment and management of whole metabolic picture

- **Hyperglycemia**
 - Monitor blood glucose
 - Avoid hyper or hypoglycemia at all costs
 - Avoid IVF with dextrose

- **Electrolyte imbalance**
 - Maintain normal sodium, potassium, and magnesium
 - Can result from damage to brain, medications or IVF
 - Monitor for dehydration

- **Strict cardiac monitoring**
 - Report all new arrhythmias – atrial fibrillation
 - Monitor for ACS or MI and treat accordingly

- **Hypoxia**
 - Avoid saturations < 92%
 - Borderline saturations, check ABGs
Maximize Function / Prevent Rehospitalization

Dysphagia, Nutrition, and Hydration

- **Dysphagia** - can occur in 25-45% of elderly patients and is common in patients with facial droop/motor weakness in mouth and throat from stroke
 - **Aspiration → → → Pneumonia**
 - Chemical pneumonitis
 - Secondary bacteria infection
 - Less a problem in patients without teeth (less flora)
 - **Dehydration and Malnutrition**
- **Dysphagia screening prior to oral intake**
 - NPO if fails screening until fully evaluated by speech therapy
- **Monitored meals**: assess for fatigue, S/S aspiration, nutrition and hydration
Maximize Function

Shoulder Management
- Humeral head subluxation
- Nursing considerations
 - Proper rolling techniques
 - Never lift under arms with transfers
 - Support affected extremity when up in chair

Edema Management
- IVs in non-paretic arm
- Utilize positional elevation
- Avoid dependent positioning
- Encourage active/active assist ROM

Spasticity & Contractures
- Paretic limb: Usually flexion, adduction, and internal rotation
- Shoulder and muscle pain
- Active ROM program
- When present: Gradual prolonged stretch sustained > 30 min
Maximize Function

Osteoporosis
- Bone loss can begin within 30 hours of immobility
- With bedrest can be as high as 25-45% in 30-36 weeks
- Hip fractures higher on affected side
- Prevention: Active weight bearing, active muscle contraction

Skin Breakdown
- Contributing factors: altered sensation, contracture, malnutrition, immobility, muscle/soft tissue atrophy
- Goal: PREVENTION
 - Frequent repositioning
 - Clean, dry skin
 - Nutrition
 - Pressure relief mattress in high risk

Heterotopic Ossification
- Deposition of CA++ in the form of mature bone in the soft tissues
- Less common in stroke than TBI/SCI
- Sx: Pain, ↓ ROM, ↑ alkaline phosphatase levels, (+) bone scan
- Rx: etidronate disodium, NSAIDS, radiation rx, possible surgical excision
Maximize Function: Urinary Dysfunction

- 51-60% have urinary incontinence
 - Can persist months after stroke

Causes
- Disruption in neuromicturition pathways
 - Associated with large cortical strokes
 - Bladder hyperreflexia and urgency incontinence
 - Bladder hyporeflexia
- Incontinence due to cognitive and language deficits
- Concurrent neuropathy and medication use
- Long term requires urology consultation and management

Goal to normalize bladder functioning and prevent secondary UTI

Management:
- Timed voiding
- Intermittant catherization
- Anticholinergic medications (hyperreflexia)
 - Inhibit involuntary detrusor contractions.
 - Ex: Oxybutinin (Ditropan XL)
- Cholinergic medications (hyporeflexia)
 - Stimulate cholinergic receptors in the smooth muscle of the urinary bladder resulting in increased peristalsis that treats urinary retention
 - Bethanechol hydrochloride (Urechoine)
Maximize Function: Visual Dysfunction

SAFETY issue with your patient!!

- **Visual Spatial Inattention (Neglect)**
 - Parietal lobe lesions
 - Rehabilitation:
 - Scanning
 - Spatial therapy

- **Double vision (diplopia)**
 - Brainstem lesions
 - Loss of depth perception
 - Rehabilitation determined by location and cause

- **Jerky eyes (oculomotor dysfunction)**
 - Rehabilitation specifically determined by optometrists and therapists

- **Visual field cuts (hemianopsia)**
 - Damage to optic nerve as it crosses in the optic chiasm
 - Rehabilitation:
 - Scanning
Maximize Function / Prevent Rehospitalization

DVT
- Incidence 23-75%
- **STASIS**
 - 10 times more common in paretic leg
 - Often starts in calf; can occur in LE, pelvis, or proximal upper extremity
 - Ambulation alone is not preventative
- **PREVENTION!!**
 - SQ Heparin or LMWH and external SCDs
 - If positive, transition to warfarin
 - Continue well into subacute phase – 3 months
 - Dextran, ASA, compression stockings not effective

VTE / PE
- Incidence 10-29%
- 30% from clinically positive DVT
- 10% mortality with VTE
- 20% mortality with symptomatic PE
- **SX:** tachypnea, tachycardia, fine crackles in lung, hemoptysis, pleuritic chest pain (subclavicular or suprascapular), malaise, pleural effusion, fever
- Dx: Spiral CT, VQ scan (older)
- Rx:
 - IV Heparin if no contraindications
 - Bedrest; mobilize after PTT therapeutic
 - Transition to warfarin – 6 months
Maximize Function: Effects Stroke and of Deconditioning

- **Musculoskeletal atrophy**
 - Decreased lean body mass, increased body fat

- **Cardiovascular deconditioning**
 - Decreased stroke volume, increased HR, decreased VO2 max, increased RR, orthostatic hypotension

- **Endocrine**
 - Impaired glucose tolerance, altered regulation of hormones

- **Body metabolism**
 - Nitrogen, calcium, potassium, phosphorus and sulfur loss

- **Neuro emotional/Psychiatric**
 - Sensory deprivation, decreased balance, decreased coordination, fatigue
 - Bereavement, adjustment to loss

- **Depression**
 - Depression screening
 - Antidepressants

- **Emotional lability/Anxiety/Outbursts/Aggression**
 - Reassurance, feedback, anxiolytics, psychiatric support
 - Expressive aphasia: allow time for response
 - Receptive aphasia: utilize demonstration
 - Avoid excessive frustration, remove emotional triggers, alternate easy and difficult tasks
Maximize Function:

- **Prohibitors:** hemodynamic or neurologic instability
 - Change in LOC or neuro status
 - Change in posturing, tone, pupils, speech

- **Monitor for physical intolerance to mobility**
 - HR increase > 20 beats/min, abnormal decrease in HR, change in rhythm
 - SBP ↑ ↓ >20 points
 - Worsened O2 saturations
 - Increased ICP
 - Diaphoretic

Mobility in the ICU

- **Graded sitting and standing**
 - Do as soon as patient medically tolerates – monitor for tolerance
 - HOB 30-40° increments – assess tolerance: orthostatic hypotension, neuro changes
 - HOB to 80° - assess tolerance: orthostatic hypotension, neuro changes

- **Engage patient in functional activities**
 - Feeding self, light grooming, upper body bathing and dressing, leisure activities
Maximize Function: From ICU to Med-Surg/Neuro

- **Positioning**
 - Reposition every 2 hours
 - Transform repositioning into a functional activity:
 - Rolling to affected and non-affected side
 - Maintaining side-lying
 - Bridging
 - Weight bearing for function

- **Splinting**
 - Prevents shortening of soft tissues, corrects biomechanical malalignment
 - Monitor skin integrity

- **Graded Sitting and Standing**
 - Progress to unsupported sitting in bed
 - Assess tolerance: orthostatic hypotension, neuro changes
 - Unsupported sitting at EOB w/ feet dangling
 - Assess tolerance: orthostatic hypotension, neuro changes

- **Sit to Stand**
 - Insure weight bearing on BLE
 - Insure appropriate blocking or support for weak LE to prevent collapse
 - Assess tolerance: orthostatic hypotension, neuro changes

- **Chair**
 - Start in short increments and increase as tolerated
 - Assess tolerance: orthostatic hypotension, neuro changes
Maximize Function:

- **Fall prevention:**
 - Balance and cognition training
 - Differentiate day to night environment, especially in the ICU
 - Reorient patient to self, surroundings, events
 - Manage environmental hazards
 - Utilize adaptive devices
 - Safety equipment: bed and chair alarms
- Fall Risk increased in right hemispheric strokes
 - Decreased balance, visual perceptions, spatial perceptions

Mobility and Fall Prevention

- **Transfers:**
 - Staff teamwork – two persons on difficult transfers
 - Maximize patient participation in transfer
 - Engage the therapy team to learn how to do transfers better

- **Grade tasks for energy expenditure**
 - Chaining tasks together demands more strength and activity tolerance

- **Progressively increase activity as patient tolerates**
 - Start with short time periods of activity
 - Plan rest periods in between activities
 - Incrementally increase activity as patient tolerates

- Fall Risk increased in right hemispheric strokes
 - Decreased balance, visual perceptions, spatial perceptions
Maximize Function: Mobility Progression in Neurologically Impaired Patients

- 24 hours
- 24-48 hours
- Day 3-4-5

- 10"
- 20"
- 15"
- 30"
- 30"
- 45"
- 45"
- 60"
Mobility Progression: Influencing Discharge Planning

- **Inpatient Rehabilitation**
 - Must be able to tolerate a minimum of 3 hours of therapy 6 days per week

- **Subacute Rehabilitation**
 - **SNF level of care**: May receive 90 minutes of therapy 5 days per week; appropriate setting for patients with more severe deficits who need longer, slower rehabilitation

- **Subacute care (LTACH)**
 - Appropriate setting for patients with more complex care needs, such as ventilator support, complex medical management
 - May be option for patients with acute care insurance but without rehab insurance
DISCHARGE GOAL:
Maximize patient functioning and tolerance to qualify for highest possible level of rehabilitation support at discharge

OVERALL GOALS:
Maximize patient’s functional outcome from stroke:
- Decrease morbidity
- Maximize function
- Prevent rehospitalization
Maximizing Stroke Outcomes Takes a Team

<table>
<thead>
<tr>
<th>PATIENT/FAMILY</th>
<th>PT</th>
<th>OT</th>
<th>ST</th>
<th>RT</th>
<th>Dietitian</th>
<th>Social Worker/Case Manager</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neurologist</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Medical Intensivist</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Internal Medicine Hospitalist</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Neurosurgeon</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nurses</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chaplain</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Thank you